BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 2157160)

  • 1. Effect of cell history on response to helix-loop-helix family of myogenic regulators.
    Schäfer BW; Blakely BT; Darlington GJ; Blau HM
    Nature; 1990 Mar; 344(6265):454-8. PubMed ID: 2157160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MyoD-Induced Trans-Differentiation: A Paradigm for Dissecting the Molecular Mechanisms of Cell Commitment, Differentiation and Reprogramming.
    Battistelli C; Garbo S; Maione R
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding and Modulating Immunity With Cell Reprogramming.
    Pires CF; Rosa FF; Kurochkin I; Pereira CF
    Front Immunol; 2019; 10():2809. PubMed ID: 31921109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master.
    Sartorelli V; Puri PL
    Mol Cell; 2018 Aug; 71(3):375-388. PubMed ID: 29887393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BCL11B Drives Human Mammary Stem Cell Self-Renewal In Vitro by Inhibiting Basal Differentiation.
    Miller DH; Jin DX; Sokol ES; Cabrera JR; Superville DA; Gorelov RA; Kuperwasser C; Gupta PB
    Stem Cell Reports; 2018 Mar; 10(3):1131-1145. PubMed ID: 29503088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Gene Manipulation Methods for Stem Cell Theranostics.
    Rathnam C; Chueng SD; Yang L; Lee KB
    Theranostics; 2017; 7(11):2775-2793. PubMed ID: 28824715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates.
    Mall M; Kareta MS; Chanda S; Ahlenius H; Perotti N; Zhou B; Grieder SD; Ge X; Drake S; Euong Ang C; Walker BM; Vierbuchen T; Fuentes DR; Brennecke P; Nitta KR; Jolma A; Steinmetz LM; Taipale J; Südhof TC; Wernig M
    Nature; 2017 Apr; 544(7649):245-249. PubMed ID: 28379941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide cis-regulatory module analysis.
    Santolini M; Sakakibara I; Gauthier M; Ribas-Aulinas F; Takahashi H; Sawasaki T; Mouly V; Concordet JP; Defossez PA; Hakim V; Maire P
    Nucleic Acids Res; 2016 Oct; 44(18):8621-8640. PubMed ID: 27302134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transdifferentiation of Fibroblasts by Defined Factors.
    Zhao Z; Xu M; Wu M; Tian X; Zhang C; Fu X
    Cell Reprogram; 2015 Jun; 17(3):151-9. PubMed ID: 26053515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule analysis of myocyte differentiation reveals bimodal lineage commitment.
    Gibson TM; Gersbach CA
    Integr Biol (Camb); 2015 Jun; 7(6):663-71. PubMed ID: 25953198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches.
    Diotel N; Rodriguez Viales R; Armant O; März M; Ferg M; Rastegar S; Strähle U
    J Comp Neurol; 2015 Jun; 523(8):1202-21. PubMed ID: 25556858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pioneer transcription factors in cell reprogramming.
    Iwafuchi-Doi M; Zaret KS
    Genes Dev; 2014 Dec; 28(24):2679-92. PubMed ID: 25512556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct reprogramming of adult cells: avoiding the pluripotent state.
    Kelaini S; Cochrane A; Margariti A
    Stem Cells Cloning; 2014; 7():19-29. PubMed ID: 24627642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus.
    Güth R; Pinch M; Unguez GA
    J Exp Biol; 2013 Jul; 216(Pt 13):2469-77. PubMed ID: 23761472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies.
    Ladewig J; Koch P; Brüstle O
    Nat Rev Mol Cell Biol; 2013 Apr; 14(4):225-36. PubMed ID: 23486282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in the reprogramming of somatic cells.
    Ma T; Xie M; Laurent T; Ding S
    Circ Res; 2013 Feb; 112(3):562-74. PubMed ID: 23371904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular roadblocks for cellular reprogramming.
    Vierbuchen T; Wernig M
    Mol Cell; 2012 Sep; 47(6):827-38. PubMed ID: 23020854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lineage conversion methodologies meet the reprogramming toolbox.
    Sancho-Martinez I; Baek SH; Izpisua Belmonte JC
    Nat Cell Biol; 2012 Sep; 14(9):892-9. PubMed ID: 22945254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells.
    Lujan E; Chanda S; Ahlenius H; Südhof TC; Wernig M
    Proc Natl Acad Sci U S A; 2012 Feb; 109(7):2527-32. PubMed ID: 22308465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GEP constitutes a negative feedback loop with MyoD and acts as a novel mediator in controlling skeletal muscle differentiation.
    Wang D; Bai X; Tian Q; Lai Y; Lin EA; Shi Y; Mu X; Feng JQ; Carlson CS; Liu CJ
    Cell Mol Life Sci; 2012 Jun; 69(11):1855-73. PubMed ID: 22179841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.