These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 21571604)

  • 1. Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (TIME) in the rat sciatic nerve.
    Badia J; Boretius T; Pascual-Font A; Udina E; Stieglitz T; Navarro X
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21571604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective chronic recording in small nerve fascicles of sciatic nerve with carbon nanotube yarns in rats.
    Kotamraju BP; Eggers TE; McCallum GA; Durand DM
    J Neural Eng; 2024 Jan; 20(6):. PubMed ID: 38100824
    [No Abstract]   [Full Text] [Related]  

  • 3. Stretchable, Fully Polymeric Electrode Arrays for Peripheral Nerve Stimulation.
    Cuttaz EA; Chapman CAR; Syed O; Goding JA; Green RA
    Adv Sci (Weinh); 2021 Apr; 8(8):2004033. PubMed ID: 33898185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless microelectrode arrays for selective and chronically stable peripheral nerve stimulation for hindlimb movement.
    Frederick RA; Troyk PR; Cogan SF
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34592725
    [No Abstract]   [Full Text] [Related]  

  • 5. Flat electrode contacts for vagus nerve stimulation.
    Bucksot JE; Wells AJ; Rahebi KC; Sivaji V; Romero-Ortega M; Kilgard MP; Rennaker RL; Hays SA
    PLoS One; 2019; 14(11):e0215191. PubMed ID: 31738766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultraflexible and Stretchable Intrafascicular Peripheral Nerve Recording Device with Axon-Dimension, Cuff-Less Microneedle Electrode Array.
    Yan D; Jiman AA; Bottorff EC; Patel PR; Meli D; Welle EJ; Ratze DC; Havton LA; Chestek CA; Kemp SWP; Bruns TM; Yoon E; Seymour JP
    Small; 2022 May; 18(21):e2200311. PubMed ID: 35491522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully Customizable, Low-Cost, Multi-Contact Nerve Cuffs for Spatially Selective Neuromodulation.
    Riley M; Tala F; Johnson KJ; Johnson BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Cellular-Level 3D Imaging of Peripheral Nerves Using a Dual-Focusing Technique for Intra-Neural Interface Implantation.
    Lee MW; Jang N; Choi N; Yang S; Jeong J; Nam HS; Oh SR; Kim K; Hwang D
    Adv Sci (Weinh); 2022 Jan; 9(3):e2102876. PubMed ID: 34845862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separated interface nerve electrode prevents direct current induced nerve damage.
    Ackermann DM; Bhadra N; Foldes EL; Kilgore KL
    J Neurosci Methods; 2011 Sep; 201(1):173-6. PubMed ID: 21276819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered Graphene Material Improves the Performance of Intraneural Peripheral Nerve Electrodes.
    Rodríguez-Meana B; Del Valle J; Viana D; Walston ST; Ria N; Masvidal-Codina E; Garrido JA; Navarro X
    Adv Sci (Weinh); 2024 Aug; 11(29):e2308689. PubMed ID: 38863325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Compound Neural Action Potentials for Functional Validation of a High-Density Intraneural Interface: A Preliminary Study.
    Kundu A; Patrick E; Currlin S; Madler R; Delgado F; Fahmy A; Verplancke R; Ballini M; Braeken D; de Beeck MO; Maghari N; Otto KJ; Bashirullah R
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38399008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Bionic Nerve Interface for Application in Bionic Limbs.
    Cho Y; Jeong HH; Shin H; Pak CJ; Cho J; Kim Y; Kim D; Kim T; Kim H; Kim S; Kwon S; Hong JP; Suh HP; Lee S
    Adv Sci (Weinh); 2023 Dec; 10(35):e2303728. PubMed ID: 37840396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-Engineered Peripheral Nerve Interfaces.
    Spearman BS; Desai VH; Mobini S; McDermott MD; Graham JB; Otto KJ; Judy JW; Schmidt CE
    Adv Funct Mater; 2018 Mar; 28(12):. PubMed ID: 37829558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Haptic Sleeve as a Method of Mechanotactile Feedback Restoration for Myoelectric Hand Prosthesis Users.
    Borkowska VR; McConnell A; Vijayakumar S; Stokes A; Roche AD
    Front Rehabil Sci; 2022; 3():806479. PubMed ID: 36188923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral neurostimulation for encoding artificial somatosensations.
    Valle G
    Eur J Neurosci; 2022 Nov; 56(10):5888-5901. PubMed ID: 36097134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal feature extraction in sensory electroneurographic signals.
    Silveira C; Khushaba RN; Brunton E; Nazarpour K
    Philos Trans A Math Phys Eng Sci; 2022 Jul; 380(2228):20210268. PubMed ID: 35658682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding Vagus-Nerve Activity with Carbon Nanotube Sensors in Freely Moving Rodents.
    Marmerstein JT; McCallum GA; Durand DM
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Microclip Peripheral Nerve Interface (μcPNI) for Bioelectronic Interfacing with Small Nerves.
    Rowan CC; Graudejus O; Otchy TM
    Adv Sci (Weinh); 2022 Jan; 9(3):e2102945. PubMed ID: 34837353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Stimulation Device to Drive Multiple Transverse Intrafascicular Electrodes and Achieve Highly Selective and Rich Neural Responses.
    Guiho T; López-Álvarez VM; Čvančara P; Hiairrassary A; Andreu D; Stieglitz T; Navarro X; Guiraud D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770527
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.