These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 21571888)
1. Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. Tseng MN; Chung PC; Tzean SS Appl Environ Microbiol; 2011 Jul; 77(13):4508-19. PubMed ID: 21571888 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms relevant to the enhanced virulence of a dihydroxynaphthalene-melanin metabolically engineered entomopathogen. Tseng MN; Chung CL; Tzean SS PLoS One; 2014; 9(3):e90473. PubMed ID: 24662974 [TBL] [Abstract][Full Text] [Related]
3. The divergence of DHN-derived melanin pathways in Metarhizium robertsii. Xie L; Liu Y; Zhang Y; Chen K; Yue Q; Wang C; Dun B; Xu Y; Zhang L World J Microbiol Biotechnol; 2024 Sep; 40(10):323. PubMed ID: 39292329 [TBL] [Abstract][Full Text] [Related]
5. Screening of Metarhizium anisopliae UV-induced mutants for faster growth yields a hyper-virulent isolate with greater UV and thermal tolerances. Zhao J; Yao R; Wei Y; Huang S; Keyhani NO; Huang Z Appl Microbiol Biotechnol; 2016 Nov; 100(21):9217-9228. PubMed ID: 27521024 [TBL] [Abstract][Full Text] [Related]
6. Compartmentalization of Melanin Biosynthetic Enzymes Contributes to Self-Defense against Intermediate Compound Scytalone in Chen X; Zhu C; Na Y; Ren D; Zhang C; He Y; Wang Y; Xiang S; Ren W; Jiang Y; Xu L; Zhu P mBio; 2021 Mar; 12(2):. PubMed ID: 33758088 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of non-melanin pigment by a divergent polyketide synthase in Metarhizium robertsii. Chen Y; Feng P; Shang Y; Xu YJ; Wang C Fungal Genet Biol; 2015 Aug; 81():142-9. PubMed ID: 25445307 [TBL] [Abstract][Full Text] [Related]
8. Bacterial Enzymes Catalyzing the Synthesis of 1,8-Dihydroxynaphthalene, a Key Precursor of Dihydroxynaphthalene Melanin, from Sorangium cellulosum. Sone Y; Nakamura S; Sasaki M; Hasebe F; Kim SY; Funa N Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500263 [TBL] [Abstract][Full Text] [Related]
9. Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. Kimura N; Tsuge T J Bacteriol; 1993 Jul; 175(14):4427-35. PubMed ID: 8392512 [TBL] [Abstract][Full Text] [Related]
10. The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum. Liu S; Peng G; Xia Y BMC Microbiol; 2012 Aug; 12():163. PubMed ID: 22853879 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. Feng B; Wang X; Hauser M; Kaufmann S; Jentsch S; Haase G; Becker JM; Szaniszlo PJ Infect Immun; 2001 Mar; 69(3):1781-94. PubMed ID: 11179356 [TBL] [Abstract][Full Text] [Related]
12. The Alternaria alternata melanin biosynthesis gene restores appressorial melanization and penetration of cellulose membranes in the melanin-deficient albino mutant of Colletotrichum lagenarium. Takano Y; Kubo Y; Kawamura C; Tsuge T; Furusawa I Fungal Genet Biol; 1997 Feb; 21(1):131-40. PubMed ID: 9126622 [TBL] [Abstract][Full Text] [Related]
13. Functional analysis of a melanin biosynthetic gene using RNAi-mediated gene silencing in Rosellinia necatrix. Shimizu T; Ito T; Kanematsu S Fungal Biol; 2014 Apr; 118(4):413-21. PubMed ID: 24742836 [TBL] [Abstract][Full Text] [Related]
14. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival. Al-Laaeiby A; Kershaw MJ; Penn TJ; Thornton CR Int J Mol Sci; 2016 Mar; 17(4):444. PubMed ID: 27023523 [TBL] [Abstract][Full Text] [Related]
15. The Adh1 gene of the fungus Metarhizium anisopliae is expressed during insect colonization and required for full virulence. Callejas-Negrete OA; Torres-Guzmán JC; Padilla-Guerrero IE; Esquivel-Naranjo U; Padilla-Ballesteros MF; García-Tapia A; Schrank A; Salazar-Solís E; Gutiérrez-Corona F; González-Hernández GA Microbiol Res; 2015 Mar; 172():57-67. PubMed ID: 25534970 [TBL] [Abstract][Full Text] [Related]
16. Transfection of entomopathogenic Guo J; Zhang P; Wu N; Liu W; Liu Y; Jin H; Francis F; Wang X Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2320572121. PubMed ID: 38885380 [TBL] [Abstract][Full Text] [Related]
17. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Kawamura C; Tsujimoto T; Tsuge T Mol Plant Microbe Interact; 1999 Jan; 12(1):59-63. PubMed ID: 9885194 [TBL] [Abstract][Full Text] [Related]
18. Polyketides produced by the entomopathogenic fungus Metarhizium anisopliae induce Candida albicans growth. Sbaraini N; Hu J; Roux I; Phan CS; Motta H; Rezaee H; Schrank A; Chooi YH; Staats CC Fungal Genet Biol; 2021 Jul; 152():103568. PubMed ID: 33991663 [TBL] [Abstract][Full Text] [Related]
19. Screening of high toxic Metarhizium strain against Plutella xylostella and its marking with green fluorescent protein. Cui Q; Zhang Y; Zang Y; Nong X; Wang G; Zhang Z World J Microbiol Biotechnol; 2014 Oct; 30(10):2767-73. PubMed ID: 25037866 [TBL] [Abstract][Full Text] [Related]
20. Proteomic Analysis of a Hypervirulent Mutant of the Insect-Pathogenic Fungus Metarhizium anisopliae Reveals Changes in Pathogenicity and Terpenoid Pathways. Huang W; Huang P; Yü D; Li C; Huang S; Qi P; Huang S; Keyhani NO; Huang Z Microbiol Spectr; 2022 Dec; 10(6):e0076022. PubMed ID: 36314906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]