These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 21571948)
1. Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Izawa T; Mihara M; Suzuki Y; Gupta M; Itoh H; Nagano AJ; Motoyama R; Sawada Y; Yano M; Hirai MY; Makino A; Nagamura Y Plant Cell; 2011 May; 23(5):1741-55. PubMed ID: 21571948 [TBL] [Abstract][Full Text] [Related]
2. Physiological significance of the plant circadian clock in natural field conditions. Izawa T Plant Cell Environ; 2012 Oct; 35(10):1729-41. PubMed ID: 22681566 [TBL] [Abstract][Full Text] [Related]
3. OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Yang Y; Peng Q; Chen GX; Li XH; Wu CY Mol Plant; 2013 Jan; 6(1):202-15. PubMed ID: 22888152 [TBL] [Abstract][Full Text] [Related]
4. A study of phytohormone biosynthetic gene expression using a circadian clock-related mutant in rice. Itoh H; Izawa T Plant Signal Behav; 2011 Dec; 6(12):1932-6. PubMed ID: 22101345 [TBL] [Abstract][Full Text] [Related]
5. OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice. Liu C; Qu X; Zhou Y; Song G; Abiri N; Xiao Y; Liang F; Jiang D; Hu Z; Yang D Plant Cell Environ; 2018 Mar; 41(3):630-645. PubMed ID: 29314052 [TBL] [Abstract][Full Text] [Related]
6. OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B. Lee YS; Yi J; An G Plant Mol Biol; 2016 Jul; 91(4-5):413-27. PubMed ID: 27039184 [TBL] [Abstract][Full Text] [Related]
7. OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice. Bai B; Zhao J; Li Y; Zhang F; Zhou J; Chen F; Xie X Plant Sci; 2016 Jun; 247():25-34. PubMed ID: 27095397 [TBL] [Abstract][Full Text] [Related]
8. Punctual transcriptional regulation by the rice circadian clock under fluctuating field conditions. Matsuzaki J; Kawahara Y; Izawa T Plant Cell; 2015 Mar; 27(3):633-48. PubMed ID: 25757473 [TBL] [Abstract][Full Text] [Related]
9. Flowering time control in rice by introducing Arabidopsis clock-associated PSEUDO-RESPONSE REGULATOR 5. Nakamichi N; Kudo T; Makita N; Kiba T; Kinoshita T; Sakakibara H Biosci Biotechnol Biochem; 2020 May; 84(5):970-979. PubMed ID: 31985350 [TBL] [Abstract][Full Text] [Related]
10. Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Pharbitis nil, a typical short-day plant. Higuchi Y; Sage-Ono K; Sasaki R; Ohtsuki N; Hoshino A; Iida S; Kamada H; Ono M Plant Cell Physiol; 2011 Apr; 52(4):638-50. PubMed ID: 21382978 [TBL] [Abstract][Full Text] [Related]
11. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Osugi A; Itoh H; Ikeda-Kawakatsu K; Takano M; Izawa T Plant Physiol; 2011 Nov; 157(3):1128-37. PubMed ID: 21880933 [TBL] [Abstract][Full Text] [Related]
12. OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. Zhao J; Huang X; Ouyang X; Chen W; Du A; Zhu L; Wang S; Deng XW; Li S PLoS One; 2012; 7(8):e43705. PubMed ID: 22912900 [TBL] [Abstract][Full Text] [Related]
13. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. Campoli C; Shtaya M; Davis SJ; von Korff M BMC Plant Biol; 2012 Jun; 12():97. PubMed ID: 22720803 [TBL] [Abstract][Full Text] [Related]
14. Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod. Han SH; Yoo SC; Lee BD; An G; Paek NC Plant Cell Environ; 2015 Dec; 38(12):2527-40. PubMed ID: 25850808 [TBL] [Abstract][Full Text] [Related]
15. Drought stress modulates diurnal oscillations of circadian clock and drought-responsive genes in Oryza sativa L. Li J; Liu YH; Zhang Y; Chen C; Yu X; Yu SW Yi Chuan; 2017 Sep; 39(9):837-846. PubMed ID: 28936981 [TBL] [Abstract][Full Text] [Related]
16. Post-transcriptional regulation of Ghd7 protein stability by phytochrome and OsGI in photoperiodic control of flowering in rice. Zheng T; Sun J; Zhou S; Chen S; Lu J; Cui S; Tian Y; Zhang H; Cai M; Zhu S; Wu M; Wang Y; Jiang L; Zhai H; Wang H; Wan J New Phytol; 2019 Oct; 224(1):306-320. PubMed ID: 31225911 [TBL] [Abstract][Full Text] [Related]
17. Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Murakami M; Tago Y; Yamashino T; Mizuno T Plant Cell Physiol; 2007 Jan; 48(1):110-21. PubMed ID: 17132630 [TBL] [Abstract][Full Text] [Related]
18. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Park DH; Somers DE; Kim YS; Choy YH; Lim HK; Soh MS; Kim HJ; Kay SA; Nam HG Science; 1999 Sep; 285(5433):1579-82. PubMed ID: 10477524 [TBL] [Abstract][Full Text] [Related]
19. Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Choi SC; Lee S; Kim SR; Lee YS; Liu C; Cao X; An G Plant Physiol; 2014 Mar; 164(3):1326-37. PubMed ID: 24420930 [TBL] [Abstract][Full Text] [Related]
20. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis. Park MJ; Kwon YJ; Gil KE; Park CM BMC Plant Biol; 2016 May; 16(1):114. PubMed ID: 27207270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]