These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 21572003)
1. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile. Saujet L; Monot M; Dupuy B; Soutourina O; Martin-Verstraete I J Bacteriol; 2011 Jul; 193(13):3186-96. PubMed ID: 21572003 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR. El Meouche I; Peltier J; Monot M; Soutourina O; Pestel-Caron M; Dupuy B; Pons JL PLoS One; 2013; 8(12):e83748. PubMed ID: 24358307 [TBL] [Abstract][Full Text] [Related]
3. C. difficile 630Δerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA. Rosenbusch KE; Bakker D; Kuijper EJ; Smits WK PLoS One; 2012; 7(10):e48608. PubMed ID: 23119071 [TBL] [Abstract][Full Text] [Related]
4. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. Merrigan M; Venugopal A; Mallozzi M; Roxas B; Viswanathan VK; Johnson S; Gerding DN; Vedantam G J Bacteriol; 2010 Oct; 192(19):4904-11. PubMed ID: 20675495 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. Underwood S; Guan S; Vijayasubhash V; Baines SD; Graham L; Lewis RJ; Wilcox MH; Stephenson K J Bacteriol; 2009 Dec; 191(23):7296-305. PubMed ID: 19783633 [TBL] [Abstract][Full Text] [Related]
7. The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. McKee RW; Mangalea MR; Purcell EB; Borchardt EK; Tamayo R J Bacteriol; 2013 Nov; 195(22):5174-85. PubMed ID: 24039264 [TBL] [Abstract][Full Text] [Related]
8. Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. Agaisse H; Lereclus D J Bacteriol; 1994 Aug; 176(15):4734-41. PubMed ID: 8045904 [TBL] [Abstract][Full Text] [Related]
9. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation. Edwards AN; Krall EG; McBride SM J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31659010 [TBL] [Abstract][Full Text] [Related]
10. RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility. Edwards AN; Anjuwon-Foster BR; McBride SM mBio; 2019 Mar; 10(2):. PubMed ID: 30862746 [No Abstract] [Full Text] [Related]
11. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Antunes A; Camiade E; Monot M; Courtois E; Barbut F; Sernova NV; Rodionov DA; Martin-Verstraete I; Dupuy B Nucleic Acids Res; 2012 Nov; 40(21):10701-18. PubMed ID: 22989714 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. Busche T; Silar R; Pičmanová M; Pátek M; Kalinowski J BMC Genomics; 2012 Sep; 13():445. PubMed ID: 22943411 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. Saujet L; Pereira FC; Serrano M; Soutourina O; Monot M; Shelyakin PV; Gelfand MS; Dupuy B; Henriques AO; Martin-Verstraete I PLoS Genet; 2013; 9(10):e1003756. PubMed ID: 24098137 [TBL] [Abstract][Full Text] [Related]
14. Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production. Ahmed UKB; Shadid TM; Larabee JL; Ballard JD mBio; 2020 Dec; 11(6):. PubMed ID: 33443122 [TBL] [Abstract][Full Text] [Related]
15. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. Daou N; Wang Y; Levdikov VM; Nandakumar M; Livny J; Bouillaut L; Blagova E; Zhang K; Belitsky BR; Rhee K; Wilkinson AJ; Sun X; Sonenshein AL PLoS One; 2019; 14(1):e0206896. PubMed ID: 30699117 [TBL] [Abstract][Full Text] [Related]
17. Global analysis of the sporulation pathway of Clostridium difficile. Fimlaid KA; Bond JP; Schutz KC; Putnam EE; Leung JM; Lawley TD; Shen A PLoS Genet; 2013; 9(8):e1003660. PubMed ID: 23950727 [TBL] [Abstract][Full Text] [Related]
18. Clostridioides difficile SinR' regulates toxin, sporulation and motility through protein-protein interaction with SinR. Ciftci Y; Girinathan BP; Dhungel BA; Hasan MK; Govind R Anaerobe; 2019 Oct; 59():1-7. PubMed ID: 31077800 [TBL] [Abstract][Full Text] [Related]
19. Modulation of toxin production by the flagellar regulon in Clostridium difficile. Aubry A; Hussack G; Chen W; KuoLee R; Twine SM; Fulton KM; Foote S; Carrillo CD; Tanha J; Logan SM Infect Immun; 2012 Oct; 80(10):3521-32. PubMed ID: 22851750 [TBL] [Abstract][Full Text] [Related]
20. σK of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation. Al-Hinai MA; Jones SW; Papoutsakis ET J Bacteriol; 2014 Jan; 196(2):287-99. PubMed ID: 24187083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]