These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 21572195)

  • 1. Low voltage cycling of programmable metallization cell memory devices.
    Kamalanathan D; Akhavan A; Kozicki MN
    Nanotechnology; 2011 Jun; 22(25):254017. PubMed ID: 21572195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells.
    Schindler C; Valov I; Waser R
    Phys Chem Chem Phys; 2009 Jul; 11(28):5974-9. PubMed ID: 19588020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide.
    Lee TJ; Chang CW; Hahm SG; Kim K; Park S; Kim DM; Kim J; Kwon WS; Liou GS; Ree M
    Nanotechnology; 2009 Apr; 20(13):135204. PubMed ID: 19420490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of memory margins in the polymer composite of [6,6]-phenyl-C
    Sun Y; Lu J; Ai C; Wen D; Bai X
    Phys Chem Chem Phys; 2016 Nov; 18(44):30808-30814. PubMed ID: 27801477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low voltage programmable unipolar inverter with a gold nanoparticle monolayer on plastic.
    Zhou Y; Han ST; Huang LB; Huang J; Yan Y; Zhou L; Roy VA
    Nanotechnology; 2013 May; 24(20):205202. PubMed ID: 23609318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductivity switching and electronic memory effect in polymers with pendant azobenzene chromophores.
    Lim SL; Li NJ; Lu JM; Ling QD; Zhu CX; Kang ET; Neoh KG
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):60-71. PubMed ID: 20355755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of cycling induced degradation mechanisms in Si nanocrystal memory devices.
    Jiang D; Zhang M; Huo Z; Wang Q; Liu J; Yu Z; Yang X; Wang Y; Zhang B; Chen J; Liu M
    Nanotechnology; 2011 Jun; 22(25):254009. PubMed ID: 21572215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures.
    Loke D; Shi L; Wang W; Zhao R; Yang H; Ng LT; Lim KG; Chong TC; Yeo YC
    Nanotechnology; 2011 Jun; 22(25):254019. PubMed ID: 21572204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature effects on the switching kinetics of a Cu-Ta2O5-based atomic switch.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2011 Jun; 22(25):254013. PubMed ID: 21572189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches.
    Li M; Zhuge F; Zhu X; Yin K; Wang J; Liu Y; He C; Chen B; Li RW
    Nanotechnology; 2010 Oct; 21(42):425202. PubMed ID: 20858929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry.
    Lee C; Kim I; Choi W; Shin H; Cho J
    Langmuir; 2009 Apr; 25(8):4274-8. PubMed ID: 19317425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical bistabilities and memory stabilities of nonvolatile bistable devices fabricated utilizing C(60) molecules embedded in a polymethyl methacrylate layer.
    Cho SH; Lee DI; Jung JH; Kim TW
    Nanotechnology; 2009 Aug; 20(34):345204. PubMed ID: 19652271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative differential resistance and memory effect in diodes based on 1,4-dibenzyl C60 and zinc phthalocyanine doped polystyrene hybrid material.
    Lin J; Zheng M; Chen J; Gao X; Ma D
    Inorg Chem; 2007 Jan; 46(1):341-4. PubMed ID: 17198444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonvolatile unipolar and bipolar bistable memory characteristics of a high temperature polyimide bearing diphenylaminobenzylidenylimine moieties.
    Kim K; Park S; Hahm SG; Lee TJ; Kim DM; Kim JC; Kwon W; Ko YG; Ree M
    J Phys Chem B; 2009 Jul; 113(27):9143-50. PubMed ID: 19518112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductance switching in Ag(2)S devices fabricated by in situ sulfurization.
    Morales-Masis M; van der Molen SJ; Fu WT; Hesselberth MB; van Ruitenbeek JM
    Nanotechnology; 2009 Mar; 20(9):095710. PubMed ID: 19417506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titanium-tungsten nanocrystals embedded in a SiO(2)/Al(2)O(3) gate dielectric stack for low-voltage operation in non-volatile memory.
    Yang S; Wang Q; Zhang M; Long S; Liu J; Liu M
    Nanotechnology; 2010 Jun; 21(24):245201. PubMed ID: 20498524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices.
    Shukla KD; Saxena N; Manivannan A
    Rev Sci Instrum; 2017 Dec; 88(12):123906. PubMed ID: 29289189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Memory-switching phenomenon in acceptor-rich organic molecules: impedance spectroscopic studies.
    Bandyopadhyay A; Pal AJ
    J Phys Chem B; 2005 Apr; 109(13):6084-8. PubMed ID: 16851669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forming and switching mechanisms of a cation-migration-based oxide resistive memory.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2010 Oct; 21(42):425205. PubMed ID: 20864781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance switching characteristics of HfO2 film with electrode for resistance change random access memory.
    Park IS; Lee JH; Lee S; Ahn J
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4139-42. PubMed ID: 18047136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.