These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 21572200)
1. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Seo K; Kim I; Jung S; Jo M; Park S; Park J; Shin J; Biju KP; Kong J; Lee K; Lee B; Hwang H Nanotechnology; 2011 Jun; 22(25):254023. PubMed ID: 21572200 [TBL] [Abstract][Full Text] [Related]
5. Programmable complementary resistive switching behaviours of a plasma-oxidised titanium oxide nanolayer. Tang G; Zeng F; Chen C; Liu H; Gao S; Song C; Lin Y; Chen G; Pan F Nanoscale; 2013 Jan; 5(1):422-8. PubMed ID: 23187889 [TBL] [Abstract][Full Text] [Related]
6. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Song S; Miller KD; Abbott LF Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623 [TBL] [Abstract][Full Text] [Related]
7. Hardware implementation of associative memory characteristics with analogue-type resistive-switching device. Moon K; Park S; Jang J; Lee D; Woo J; Cha E; Lee S; Park J; Song J; Koo Y; Hwang H Nanotechnology; 2014 Dec; 25(49):495204. PubMed ID: 25414164 [TBL] [Abstract][Full Text] [Related]
8. Spike timing-dependent plasticity of neural circuits. Dan Y; Poo MM Neuron; 2004 Sep; 44(1):23-30. PubMed ID: 15450157 [TBL] [Abstract][Full Text] [Related]
9. Spike timing-dependent plasticity: from synapse to perception. Dan Y; Poo MM Physiol Rev; 2006 Jul; 86(3):1033-48. PubMed ID: 16816145 [TBL] [Abstract][Full Text] [Related]
10. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device. Park S; Noh J; Choo ML; Sheri AM; Chang M; Kim YB; Kim CJ; Jeon M; Lee BG; Lee BH; Hwang H Nanotechnology; 2013 Sep; 24(38):384009. PubMed ID: 23999317 [TBL] [Abstract][Full Text] [Related]
11. Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing. Wang Y; Lv Z; Chen J; Wang Z; Zhou Y; Zhou L; Chen X; Han ST Adv Mater; 2018 Sep; 30(38):e1802883. PubMed ID: 30063261 [TBL] [Abstract][Full Text] [Related]
12. Discrete states of synaptic strength in a stochastic model of spike-timing-dependent plasticity. Elliott T Neural Comput; 2010 Jan; 22(1):244-72. PubMed ID: 19764870 [TBL] [Abstract][Full Text] [Related]
14. Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution. Medeiros-Ribeiro G; Perner F; Carter R; Abdalla H; Pickett MD; Williams RS Nanotechnology; 2011 Mar; 22(9):095702. PubMed ID: 21258143 [TBL] [Abstract][Full Text] [Related]
15. What can a neuron learn with spike-timing-dependent plasticity? Legenstein R; Naeger C; Maass W Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932 [TBL] [Abstract][Full Text] [Related]
16. Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity. Zou Q; Bornat Y; Saïghi S; Tomas J; Renaud S; Destexhe A Network; 2006 Sep; 17(3):211-33. PubMed ID: 17162612 [TBL] [Abstract][Full Text] [Related]
17. A neural circuit model forming semantic network with exception using spike-timing-dependent plasticity of inhibitory synapses. Murakoshi K; Suganuma K Biosystems; 2007; 90(3):903-10. PubMed ID: 17643738 [TBL] [Abstract][Full Text] [Related]