These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21572203)

  • 1. Observation of two resistance switching modes in TiO2 memristive devices electroformed at low current.
    Miao F; Joshua Yang J; Borghetti J; Medeiros-Ribeiro G; Stanley Williams R
    Nanotechnology; 2011 Jun; 22(25):254007. PubMed ID: 21572203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Coexistence of Two Bipolar Resistive Switching Modes with Opposite Polarity in Pt/TiO
    Zhang H; Yoo S; Menzel S; Funck C; Cüppers F; Wouters DJ; Hwang CS; Waser R; Hoffmann-Eifert S
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29766-29778. PubMed ID: 30088755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and chemical characterization of TiO2 memristive devices by spatially-resolved NEXAFS.
    Strachan JP; Joshua Yang J; Münstermann R; Scholl A; Medeiros-Ribeiro G; Stewart DR; Stanley Williams R
    Nanotechnology; 2009 Dec; 20(48):485701. PubMed ID: 19880979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass fabrication of resistive random access crossbar arrays by step and flash imprint lithography.
    Yun DK; Kim KD; Kim S; Lee JH; Park HH; Jeong JH; Choi YK; Choi DG
    Nanotechnology; 2009 Nov; 20(44):445305. PubMed ID: 19809105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal bipolar-like resistance change behavior induced by symmetric electroforming in Pt/TiO2/Pt resistive switching cells.
    Jeong DS; Schroeder H; Waser R
    Nanotechnology; 2009 Sep; 20(37):375201. PubMed ID: 19706954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D integration of planar crossbar memristive devices with CMOS substrate.
    Lin P; Pi S; Xia Q
    Nanotechnology; 2014 Oct; 25(40):405202. PubMed ID: 25224779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TiO2--a prototypical memristive material.
    Szot K; Rogala M; Speier W; Klusek Z; Besmehn A; Waser R
    Nanotechnology; 2011 Jun; 22(25):254001. PubMed ID: 21572202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO₂/Pt cell.
    Yoon KJ; Lee MH; Kim GH; Song SJ; Seok JY; Han S; Yoon JH; Kim KM; Hwang CS
    Nanotechnology; 2012 May; 23(18):185202. PubMed ID: 22516621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures.
    Kim KM; Kim GH; Song SJ; Seok JY; Lee MH; Yoon JH; Hwang CS
    Nanotechnology; 2010 Jul; 21(30):305203. PubMed ID: 20610869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetrical negative differential resistance behavior of a resistive switching device.
    Du Y; Pan H; Wang S; Wu T; Feng YP; Pan J; Wee AT
    ACS Nano; 2012 Mar; 6(3):2517-23. PubMed ID: 22309136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic bipolar resistive switching modes determined by the preceding unipolar resistive switching reset behavior in Pt/TiO2/Pt.
    Yoon KJ; Song SJ; Seok JY; Yoon JH; Kim GH; Lee JH; Hwang CS
    Nanotechnology; 2013 Apr; 24(14):145201. PubMed ID: 23507958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Memristive switching of single-component metallic nanowires.
    Johnson SL; Sundararajan A; Hunley DP; Strachan DR
    Nanotechnology; 2010 Mar; 21(12):125204. PubMed ID: 20203360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm.
    Alibart F; Gao L; Hoskins BD; Strukov DB
    Nanotechnology; 2012 Feb; 23(7):075201. PubMed ID: 22260949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All solution-processed, fully transparent resistive memory devices.
    Kim A; Song K; Kim Y; Moon J
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4525-30. PubMed ID: 22010837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistive random access memory enabled by carbon nanotube crossbar electrodes.
    Tsai CL; Xiong F; Pop E; Shim M
    ACS Nano; 2013 Jun; 7(6):5360-6. PubMed ID: 23705675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memristive behaviour in poly-acrylic acid coated TiO
    Conti D; Lamberti A; Porro S; Rivolo P; Chiolerio A; Pirri CF; Ricciardi C
    Nanotechnology; 2016 Dec; 27(48):485208. PubMed ID: 27819794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches.
    Li M; Zhuge F; Zhu X; Yin K; Wang J; Liu Y; He C; Chen B; Li RW
    Nanotechnology; 2010 Oct; 21(42):425202. PubMed ID: 20858929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly stable resistive switching on monocrystalline ZnO.
    Shih A; Zhou W; Qiu J; Yang HJ; Chen S; Mi Z; Shih I
    Nanotechnology; 2010 Mar; 21(12):125201. PubMed ID: 20182012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer.
    Li Y; Long S; Lv H; Liu Q; Wang Y; Zhang S; Lian W; Wang M; Zhang K; Xie H; Liu S; Liu M
    Nanotechnology; 2011 Jun; 22(25):254028. PubMed ID: 21572216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.