These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 21572410)

  • 1. Nanoantenna-enhanced gas sensing in a single tailored nanofocus.
    Liu N; Tang ML; Hentschel M; Giessen H; Alivisatos AP
    Nat Mater; 2011 May; 10(8):631-6. PubMed ID: 21572410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement.
    Deng YH; Yang ZJ; He J
    Opt Express; 2018 Nov; 26(24):31116-31128. PubMed ID: 30650702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold crescent nanodisk array for nanoantenna-enhanced sensing in subwavelength areas.
    Zhang Z; Zhou B; Huang Y; Liao Z; Li Z; Li S; Wang S; Wen W
    Appl Opt; 2014 Nov; 53(31):7236-40. PubMed ID: 25402882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method.
    Kaniber M; Schraml K; Regler A; Bartl J; Glashagen G; Flassig F; Wierzbowski J; Finley JJ
    Sci Rep; 2016 Mar; 6():23203. PubMed ID: 27005986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.
    Blanchard R; Boriskina SV; Genevet P; Kats MA; Tetienne JP; Yu N; Scully MO; Dal Negro L; Capasso F
    Opt Express; 2011 Oct; 19(22):22113-24. PubMed ID: 22109055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembly of Plasmonic Nanoantenna-Waveguide Structures for Subdiffractional Chiral Sensing.
    Rothe M; Zhao Y; Müller J; Kewes G; Koch CT; Lu Y; Benson O
    ACS Nano; 2021 Jan; 15(1):351-361. PubMed ID: 33233888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design Principles for Sensitivity Optimization in Plasmonic Hydrogen Sensors.
    Sterl F; Strohfeldt N; Both S; Herkert E; Weiss T; Giessen H
    ACS Sens; 2020 Apr; 5(4):917-927. PubMed ID: 31997641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-Opto Plasmonic-Controlled Bulk and Surface Sensitivity Analysis of a Paired Nano-Structured Antenna with a Label-Free Detection Approach.
    Verma S; Ghosh S; Rahman BMA
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double Fano resonances in individual metallic nanostructure for high sensing sensitivity.
    Yan Z; Wen X; Gu P; Huang Z; Zhan P; Chen Z; Wang Z
    Nanotechnology; 2017 Jul; ():. PubMed ID: 28743841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale.
    Wertz E; Isaacoff BP; Flynn JD; Biteen JS
    Nano Lett; 2015 Apr; 15(4):2662-70. PubMed ID: 25799002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas.
    Syrenova S; Wadell C; Langhammer C
    Nano Lett; 2014 May; 14(5):2655-63. PubMed ID: 24697350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence.
    Taminiau TH; Moerland RJ; Segerink FB; Kuipers L; van Hulst NF
    Nano Lett; 2007 Jan; 7(1):28-33. PubMed ID: 17212435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity.
    Yan Z; Wen X; Gu P; Zhong H; Zhan P; Chen Z; Wang Z
    Nanotechnology; 2017 Oct; 28(47):475203. PubMed ID: 29086757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic optical trapping of nanoparticles using T-shaped copper nanoantennas.
    Li R; Zhao Y; Li R; Liu H; Ge Y; Xu Z
    Opt Express; 2021 Mar; 29(7):9826-9835. PubMed ID: 33820135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From single-particle-like to interaction-mediated plasmonic resonances in graphene nanoantennas.
    Müller MM; Kosik M; Pelc M; Bryant GW; Ayuela A; Rockstuhl C; Słowik K
    J Appl Phys; 2021; 129(9):. PubMed ID: 36575704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays.
    Chau YC; Wang CK; Shen L; Lim CM; Chiang HP; Chao CC; Huang HJ; Lin CT; Kumara NTRN; Voo NY
    Sci Rep; 2017 Dec; 7(1):16817. PubMed ID: 29196641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.