BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 21572434)

  • 1. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells.
    Johnson SL; Eckrich T; Kuhn S; Zampini V; Franz C; Ranatunga KM; Roberts TP; Masetto S; Knipper M; Kros CJ; Marcotti W
    Nat Neurosci; 2011 Jun; 14(6):711-7. PubMed ID: 21572434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical properties of CaV1.3 calcium channels in gerbil inner hair cells.
    Johnson SL; Marcotti W
    J Physiol; 2008 Feb; 586(4):1029-42. PubMed ID: 18174213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The resting transducer current drives spontaneous activity in prehearing mammalian cochlear inner hair cells.
    Johnson SL; Kennedy HJ; Holley MC; Fettiplace R; Marcotti W
    J Neurosci; 2012 Aug; 32(31):10479-83. PubMed ID: 22855797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea.
    Sendin G; Bourien J; Rassendren F; Puel JL; Nouvian R
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1999-2004. PubMed ID: 24429348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea.
    Jeng JY; Ceriani F; Hendry A; Johnson SL; Yen P; Simmons DD; Kros CJ; Marcotti W
    J Physiol; 2020 Jan; 598(1):151-170. PubMed ID: 31661723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connexin-Mediated Signaling in Nonsensory Cells Is Crucial for the Development of Sensory Inner Hair Cells in the Mouse Cochlea.
    Johnson SL; Ceriani F; Houston O; Polishchuk R; Polishchuk E; Crispino G; Zorzi V; Mammano F; Marcotti W
    J Neurosci; 2017 Jan; 37(2):258-268. PubMed ID: 28077706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and function of the voltage-gated sodium current in immature mammalian cochlear inner hair cells.
    Eckrich T; Varakina K; Johnson SL; Franz C; Singer W; Kuhn S; Knipper M; Holley MC; Marcotti W
    PLoS One; 2012; 7(9):e45732. PubMed ID: 23029208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional maturation of the exocytotic machinery at gerbil hair cell ribbon synapses.
    Johnson SL; Franz C; Knipper M; Marcotti W
    J Physiol; 2009 Apr; 587(Pt 8):1715-26. PubMed ID: 19237422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elementary properties of CaV1.3 Ca(2+) channels expressed in mouse cochlear inner hair cells.
    Zampini V; Johnson SL; Franz C; Lawrence ND; Münkner S; Engel J; Knipper M; Magistretti J; Masetto S; Marcotti W
    J Physiol; 2010 Jan; 588(Pt 1):187-99. PubMed ID: 19917569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-Induced calcium release during action potential firing in developing inner hair cells.
    Iosub R; Avitabile D; Grant L; Tsaneva-Atanasova K; Kennedy HJ
    Biophys J; 2015 Mar; 108(5):1003-12. PubMed ID: 25762313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mGluR1 enhances efferent inhibition of inner hair cells in the developing rat cochlea.
    Ye Z; Goutman JD; Pyott SJ; Glowatzki E
    J Physiol; 2017 Jun; 595(11):3483-3495. PubMed ID: 28211069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic organization in cochlear inner hair cells deficient for the CaV1.3 (alpha1D) subunit of L-type Ca2+ channels.
    Nemzou N RM; Bulankina AV; Khimich D; Giese A; Moser T
    Neuroscience; 2006 Sep; 141(4):1849-60. PubMed ID: 16828974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of synapse number, structure and function in the cochlea.
    Meyer AC; Frank T; Khimich D; Hoch G; Riedel D; Chapochnikov NM; Yarin YM; Harke B; Hell SW; Egner A; Moser T
    Nat Neurosci; 2009 Apr; 12(4):444-53. PubMed ID: 19270686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tonotopic variation in the calcium dependence of neurotransmitter release and vesicle pool replenishment at mammalian auditory ribbon synapses.
    Johnson SL; Forge A; Knipper M; Münkner S; Marcotti W
    J Neurosci; 2008 Jul; 28(30):7670-8. PubMed ID: 18650343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivating potassium currents in apical and basal turn inner hair cells from guinea-pig cochlea.
    Kimitsuki T; Nawate A; Kakazu Y; Matsumoto N; Takaiwa K; Komune N; Noda T; Komune S
    Brain Res; 2008 Sep; 1228():68-72. PubMed ID: 18619421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic deletion of SK2 channels in mouse inner hair cells prevents the developmental linearization in the Ca2+ dependence of exocytosis.
    Johnson SL; Adelman JP; Marcotti W
    J Physiol; 2007 Sep; 583(Pt 2):631-46. PubMed ID: 17627990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical period of prehearing spontaneous Ca
    Carlton AJ; Jeng JY; Grandi FC; De Faveri F; Ceriani F; De Tomasi L; Underhill A; Johnson SL; Legan KP; Kros CJ; Richardson GP; Mustapha M; Marcotti W
    EMBO J; 2023 Feb; 42(4):e112118. PubMed ID: 36594367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic efferent synaptic transmission regulates the maturation of auditory hair cell ribbon synapses.
    Johnson SL; Wedemeyer C; Vetter DE; Adachi R; Holley MC; Elgoyhen AB; Marcotti W
    Open Biol; 2013 Nov; 3(11):130163. PubMed ID: 24350389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells.
    Marcotti W; Johnson SL; Kros CJ
    J Physiol; 2004 Nov; 560(Pt 3):691-708. PubMed ID: 15331671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins.
    Kim KX; Fettiplace R
    J Gen Physiol; 2013 Jan; 141(1):141-8. PubMed ID: 23277480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.