These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21572513)

  • 1. Frailty effects in networks: comparison and identification of individual heterogeneity versus preferential attachment in evolving networks.
    de Blasio BF; Seierstad TG; Aalen OO
    J R Stat Soc Ser C Appl Stat; 2011 Mar; 60(2):239-259. PubMed ID: 21572513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the Influence of Inverse Preferential Attachment on Network Development.
    Siew CSQ; Vitevitch MS
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling properties of scale-free evolving networks: continuous approach.
    Dorogovtsev SN; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056125. PubMed ID: 11414979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power Law in Deep Neural Networks: Sparse Network Generation and Continual Learning With Preferential Attachment.
    Feng F; Hou L; She Q; Chan RHM; Kwok JT
    IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):8999-9013. PubMed ID: 36342998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power-law distribution of degree-degree distance: A better representation of the scale-free property of complex networks.
    Zhou B; Meng X; Stanley HE
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14812-14818. PubMed ID: 32541015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Preferential Attachment Paradox: How Preferential Attachment Combines with Growth to Produce Networks with Log-normal In-degree Distributions.
    Sheridan P; Onodera T
    Sci Rep; 2018 Feb; 8(1):2811. PubMed ID: 29434232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An assessment of preferential attachment as a mechanism for human sexual network formation.
    Jones JH; Handcock MS
    Proc Biol Sci; 2003 Jun; 270(1520):1123-8. PubMed ID: 12816649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Link prediction for tree-like networks.
    Shang KK; Li TC; Small M; Burton D; Wang Y
    Chaos; 2019 Jun; 29(6):061103. PubMed ID: 31266316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Popularity versus similarity in growing networks.
    Papadopoulos F; Kitsak M; Serrano MÁ; Boguñá M; Krioukov D
    Nature; 2012 Sep; 489(7417):537-40. PubMed ID: 22972194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stationary and nonstationary properties of evolving networks with preferential linkage.
    Jezewski W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):067102. PubMed ID: 12513445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal effects in the growth of networks.
    Medo M; Cimini G; Gualdi S
    Phys Rev Lett; 2011 Dec; 107(23):238701. PubMed ID: 22182132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks.
    Sendiña-Nadal I; Danziger MM; Wang Z; Havlin S; Boccaletti S
    Sci Rep; 2016 Feb; 6():21297. PubMed ID: 26887684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unifying evolutionary and network dynamics.
    Swarup S; Gasser L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066114. PubMed ID: 17677332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential attachment in the evolution of metabolic networks.
    Light S; Kraulis P; Elofsson A
    BMC Genomics; 2005 Nov; 6():159. PubMed ID: 16281983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Edge removal balances preferential attachment and triad closing.
    Brot H; Honig M; Muchnik L; Goldenberg J; Louzoun Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042815. PubMed ID: 24229233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly rules for protein networks derived from phylogenetic-statistical analysis of whole genomes.
    Pagel M; Meade A; Scott D
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S16. PubMed ID: 17288574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ordinal Preferential Attachment: A Self-Organizing Principle Generating Dense Scale-Free Networks.
    Haruna T; Gunji YP
    Sci Rep; 2019 Mar; 9(1):4130. PubMed ID: 30858504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly clustered scale-free networks.
    Klemm K; Eguíluz VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036123. PubMed ID: 11909181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-invariant degree growth in preferential attachment network models.
    Sun J; Medo M; Staab S
    Phys Rev E; 2020 Feb; 101(2-1):022309. PubMed ID: 32168595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growing optimal scale-free networks via likelihood.
    Small M; Li Y; Stemler T; Judd K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042801. PubMed ID: 25974541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.