BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 21572516)

  • 1. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors.
    Raveh B; London N; Zimmerman L; Schueler-Furman O
    PLoS One; 2011 Apr; 6(4):e18934. PubMed ID: 21572516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions.
    London N; Raveh B; Cohen E; Fathi G; Schueler-Furman O
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W249-53. PubMed ID: 21622962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling beta-sheet peptide-protein interactions: Rosetta FlexPepDock in CAPRI rounds 38-45.
    Khramushin A; Marcu O; Alam N; Shimony O; Padhorny D; Brini E; Dill KA; Vajda S; Kozakov D; Schueler-Furman O
    Proteins; 2020 Aug; 88(8):1037-1049. PubMed ID: 31891416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rosetta FlexPepDock to predict peptide-MHC binding: An approach for non-canonical amino acids.
    Bloodworth N; Barbaro NR; Moretti R; Harrison DG; Meiler J
    PLoS One; 2022; 17(12):e0275759. PubMed ID: 36512534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-angstrom modeling of complexes between flexible peptides and globular proteins.
    Raveh B; London N; Schueler-Furman O
    Proteins; 2010 Jul; 78(9):2029-40. PubMed ID: 20455260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Peptide-Protein Structure and Binding Using Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind.
    Alam N; Schueler-Furman O
    Methods Mol Biol; 2017; 1561():139-169. PubMed ID: 28236237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock.
    Alam N; Goldstein O; Xia B; Porter KA; Kozakov D; Schueler-Furman O
    PLoS Comput Biol; 2017 Dec; 13(12):e1005905. PubMed ID: 29281622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing protein folding neural networks for peptide-protein docking.
    Tsaban T; Varga JK; Avraham O; Ben-Aharon Z; Khramushin A; Schueler-Furman O
    Nat Commun; 2022 Jan; 13(1):176. PubMed ID: 35013344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocols for All-Atom Reconstruction and High-Resolution Refinement of Protein-Peptide Complex Structures.
    Badaczewska-Dawid AE; Khramushin A; Kolinski A; Schueler-Furman O; Kmiecik S
    Methods Mol Biol; 2020; 2165():273-287. PubMed ID: 32621231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InterPepScore: a deep learning score for improving the FlexPepDock refinement protocol.
    Johansson-Åkhe I; Wallner B
    Bioinformatics; 2022 Jun; 38(12):3209-3215. PubMed ID: 35575349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Flexible Peptide Docking by Conformer Generation and Ensemble Docking of Peptides.
    Zhou P; Li B; Yan Y; Jin B; Wang L; Huang SY
    J Chem Inf Model; 2018 Jun; 58(6):1292-1302. PubMed ID: 29738247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PaFlexPepDock: parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta.
    Li H; Lu L; Chen R; Quan L; Xia X; Lü Q
    PLoS One; 2014; 9(5):e94769. PubMed ID: 24801496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified conformational selection and induced fit approach to protein-peptide docking.
    Trellet M; Melquiond AS; Bonvin AM
    PLoS One; 2013; 8(3):e58769. PubMed ID: 23516555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-peptide complex prediction through fragment interaction patterns.
    Verschueren E; Vanhee P; Rousseau F; Schymkowitz J; Serrano L
    Structure; 2013 May; 21(5):789-97. PubMed ID: 23583037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site.
    Kurcinski M; Jamroz M; Blaszczyk M; Kolinski A; Kmiecik S
    Nucleic Acids Res; 2015 Jul; 43(W1):W419-24. PubMed ID: 25943545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Backbone Assembly and Refinement of Symmetrical Homomeric Complexes.
    Roy Burman SS; Yovanno RA; Gray JJ
    Structure; 2019 Jun; 27(6):1041-1051.e8. PubMed ID: 31006588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Docking of peptides to GPCRs using a combination of CABS-dock with FlexPepDock refinement.
    Badaczewska-Dawid AE; Kmiecik S; Koliński M
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32520310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FlexPepDock lessons from CAPRI peptide-protein rounds and suggested new criteria for assessment of model quality and utility.
    Marcu O; Dodson EJ; Alam N; Sperber M; Kozakov D; Lensink MF; Schueler-Furman O
    Proteins; 2017 Mar; 85(3):445-462. PubMed ID: 28002624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-protein and peptide-protein docking and refinement using ATTRACT in CAPRI.
    Schindler CE; Chauvot de Beauchêne I; de Vries SJ; Zacharias M
    Proteins; 2017 Mar; 85(3):391-398. PubMed ID: 27785830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subangstrom accuracy in pHLA-I modeling by Rosetta FlexPepDock refinement protocol.
    Liu T; Pan X; Chao L; Tan W; Qu S; Yang L; Wang B; Mei H
    J Chem Inf Model; 2014 Aug; 54(8):2233-42. PubMed ID: 25050981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.