These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 21572575)
1. Existence, Uniqueness and Asymptotic Stability of Time Periodic Traveling Waves for a Periodic Lotka-Volterra Competition System with Diffusion. Zhao G; Ruan S J Math Pures Appl; 2011 Jun; 96(6):627-671. PubMed ID: 21572575 [TBL] [Abstract][Full Text] [Related]
2. The periodic traveling waves in a diffusive periodic SIR epidemic model with nonlinear incidence. Wu W; Teng Z Chaos Solitons Fractals; 2021 Mar; 144():110683. PubMed ID: 33551582 [TBL] [Abstract][Full Text] [Related]
3. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Du LJ; Li WT; Wang JB Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1187-1213. PubMed ID: 29161856 [TBL] [Abstract][Full Text] [Related]
4. Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Ma X; Liu R; Cai L Math Biosci Eng; 2024 Jan; 21(1):444-473. PubMed ID: 38303430 [TBL] [Abstract][Full Text] [Related]
5. Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments. Fan M; Wang K; Jiang D Math Biosci; 1999 Aug; 160(1):47-61. PubMed ID: 10465931 [TBL] [Abstract][Full Text] [Related]
6. Traveling Waves and Estimation of Minimal Wave Speed for a Diffusive Influenza Model with Multiple Strains. Chen G; Fu X; Sun M Bull Math Biol; 2020 Sep; 82(9):121. PubMed ID: 32920726 [TBL] [Abstract][Full Text] [Related]
7. Asymptotic behaviour of the non-autonomous competing two-species Lotka-Volterra models with impulsive effect. Li Y; Cui J; Song X J Biol Dyn; 2009 Jan; 3(1):58-72. PubMed ID: 22880750 [TBL] [Abstract][Full Text] [Related]
8. Traveling Waves in Spatial SIRS Models. Ai S; Albashaireh R J Dyn Differ Equ; 2014; 26(1):143-164. PubMed ID: 32214760 [TBL] [Abstract][Full Text] [Related]
9. Traveling waves for SVIR epidemic model with nonlocal dispersal. Zhang R; Liu SQ Math Biosci Eng; 2019 Feb; 16(3):1654-1682. PubMed ID: 30947437 [TBL] [Abstract][Full Text] [Related]
10. On the conjecture for the pushed wavefront to the diffusive Lotka-Volterra competition model. Alhasanat A; Ou C J Math Biol; 2020 Apr; 80(5):1413-1422. PubMed ID: 31925507 [TBL] [Abstract][Full Text] [Related]
11. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays. Meng X; Chen L J Theor Biol; 2006 Dec; 243(4):562-74. PubMed ID: 16934297 [TBL] [Abstract][Full Text] [Related]
12. Modulo Periodic Poisson Stable Solutions of Quasilinear Differential Equations. Akhmet M; Tleubergenova M; Zhamanshin A Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828232 [TBL] [Abstract][Full Text] [Related]
13. Bistable wave speed of the Lotka-Volterra competition model. Ma M; Zhang Q; Yue J; Ou C J Biol Dyn; 2020 Dec; 14(1):608-620. PubMed ID: 32706320 [TBL] [Abstract][Full Text] [Related]
14. Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. Zhao L; Wang ZC; Ruan S J Math Biol; 2018 Dec; 77(6-7):1871-1915. PubMed ID: 29564532 [TBL] [Abstract][Full Text] [Related]
15. The periodic competing Lotka-Volterra model with impulsive effect. Liu B; Chen L Math Med Biol; 2004 Jun; 21(2):129-45. PubMed ID: 15228103 [TBL] [Abstract][Full Text] [Related]
16. Periodic and traveling wave solutions to Volterra-Lotka equations with diffusion. Chow PL; Tam WC Bull Math Biol; 1976; 38(06):643-58. PubMed ID: 1033006 [No Abstract] [Full Text] [Related]
17. Are buffers boring? Uniqueness and asymptotical stability of traveling wave fronts in the buffered bistable system. Tsai JC; Sneyd J J Math Biol; 2007 Apr; 54(4):513-53. PubMed ID: 17151884 [TBL] [Abstract][Full Text] [Related]
18. Forced waves and their asymptotic behaviors in a Lotka-Volterra competition model with spatio-temporal nonlocal effect under climate change. Yang Y; Li Z; Xia C Math Biosci Eng; 2023 Jun; 20(8):13638-13659. PubMed ID: 37679105 [TBL] [Abstract][Full Text] [Related]
19. Traveling wave phenomena in a nonlocal dispersal predator-prey system with the Beddington-DeAngelis functional response and harvesting. Zhao Z; Li Y; Feng Z Math Biosci Eng; 2021 Feb; 18(2):1629-1652. PubMed ID: 33757202 [TBL] [Abstract][Full Text] [Related]
20. Speed determinacy of travelling waves for a three-component lattice Lotka-Volterra competition system. Tang Y; Pan C; Wang H; Ouyang Z J Biol Dyn; 2022 Dec; 16(1):340-353. PubMed ID: 34319222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]