These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21572934)

  • 1. Solid immersion lens at the aplanatic condition for enhancing the spectral bandwidth of a waveguide grating coupler.
    Pereira MB; Craven JS; Mendes SB
    Opt Eng; 2010 Dec; 49(12):124601. PubMed ID: 21572934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extension of the broadband single-mode integrated optical waveguide technique to the ultraviolet spectral region and its applications.
    Wiederkehr RS; Mendes SB
    Analyst; 2014 Mar; 139(6):1396-402. PubMed ID: 24466569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband coupling into a single-mode, electroactive integrated optical waveguide for spectroelectrochemical analysis of surface-confined redox couples.
    Bradshaw JT; Mendes SB; Armstrong NR; Saavedra SS
    Anal Chem; 2003 Mar; 75(5):1080-8. PubMed ID: 12641226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design for broadband high-efficiency grating couplers.
    Xiao Z; Luan F; Liow TY; Zhang J; Shum P
    Opt Lett; 2012 Feb; 37(4):530-2. PubMed ID: 22344096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bandwidth analysis of waveguide grating coupler.
    Xiao Z; Liow TY; Zhang J; Shum P; Luan F
    Opt Express; 2013 Mar; 21(5):5688-700. PubMed ID: 23482142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simplified broadband coupling approach applied to chemically robust sol-gel, planar integrated optical waveguides.
    Bradshaw JT; Mendes SB; Saavedra SS
    Anal Chem; 2002 Apr; 74(8):1751-9. PubMed ID: 11985305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations on the Q and CT Bands of Cytochrome c Submonolayer Adsorbed on an Alumina Surface Using Broadband Spectroscopy with Single-Mode Integrated Optical Waveguides.
    Wiederkehr RS; Hoops GC; Aslan MM; Byard CL; Mendes SB
    J Phys Chem C Nanomater Interfaces; 2009 May; 113(19):8306-8312. PubMed ID: 21289870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lippmann waveguide spectrometer with enhanced throughput and bandwidth for space and commercial applications.
    Madi M; Ceyssens F; Shorubalko I; Herzig HP; Guldimann B; Giaccari P
    Opt Express; 2018 Feb; 26(3):2682-2707. PubMed ID: 29401806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens.
    Chaganti K; Salakhutdinov I; Avrutsky I; Auner GW
    Opt Express; 2006 May; 14(9):4064-72. PubMed ID: 19516554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 70-nm-bandwidth achromatic waveguide coupler.
    Mendes SB; Li L; Burke JJ; Lee JE; Saavedra SS
    Appl Opt; 1995 Sep; 34(27):6180-6. PubMed ID: 21060461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broad-band surface optical coupler based on a SiO
    Atsumi Y; Yoshida T; Omoda E; Sakakibara Y
    Opt Express; 2018 Apr; 26(8):10400-10407. PubMed ID: 29715977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a high-efficiency grating coupler based on a silicon nitride overlay for silicon-on-insulator waveguides.
    Chen HY; Yang KC
    Appl Opt; 2010 Nov; 49(33):6455-62. PubMed ID: 21102671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication.
    Sima C; Gates JC; Holmes C; Mennea PL; Zervas MN; Smith PG
    Opt Lett; 2013 Sep; 38(17):3448-51. PubMed ID: 23988981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon waveguide grating coupler based on a segmented grating structure.
    Hong J; Qiu F; Spring AM; Yokoyama S
    Appl Opt; 2018 Apr; 57(12):3301-3305. PubMed ID: 29714320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband fiber-chip zero-order surface grating coupler with 0.4  dB efficiency.
    Sánchez-Postigo A; Gonzalo Wangüemert-Pérez J; Luque-González JM; Molina-Fernández Í; Cheben P; Alonso-Ramos CA; Halir R; Schmid JH; Ortega-Moñux A
    Opt Lett; 2016 Jul; 41(13):3013-6. PubMed ID: 27367089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact ultrabroad-bandwidth cascaded arrayed waveguide gratings.
    van Wijk A; Doerr CR; Ali Z; Karabiyik M; Akca BI
    Opt Express; 2020 May; 28(10):14618-14626. PubMed ID: 32403499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microspectrometer with slab-waveguide transmission gratings.
    Sander D; Blume O; Möller J
    Appl Opt; 1996 Jul; 35(21):4096-101. PubMed ID: 21102814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume grating preferential-order focusing waveguide coupler.
    Schultz SM; Glytsis EN; Gaylord TK
    Opt Lett; 1999 Dec; 24(23):1708-10. PubMed ID: 18079910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-broadband and ultra-compact polarization beam splitter based on a tapered subwavelength-grating waveguide and slot waveguide.
    Mao S; Cheng L; Zhao C; Fu HY
    Opt Express; 2021 Aug; 29(18):28066-28077. PubMed ID: 34614945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics.
    Antelius M; Gylfason KB; Sohlström H
    Opt Express; 2011 Feb; 19(4):3592-8. PubMed ID: 21369182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.