These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21573011)

  • 1. Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: orphans and crosstalks.
    Procaccini A; Lunt B; Szurmant H; Hwa T; Weigt M
    PLoS One; 2011 May; 6(5):e19729. PubMed ID: 21573011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method.
    Burger L; van Nimwegen E
    Mol Syst Biol; 2008; 4():165. PubMed ID: 18277381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building interacting partner predictors using co-varying residue pairs between histidine kinase and response regulator pairs of 48 bacterial two-component systems.
    Choi K; Kim S
    Proteins; 2011 Apr; 79(4):1118-31. PubMed ID: 21246634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connecting the Sequence-Space of Bacterial Signaling Proteins to Phenotypes Using Coevolutionary Landscapes.
    Cheng RR; Nordesjö O; Hayes RL; Levine H; Flores SC; Onuchic JN; Morcos F
    Mol Biol Evol; 2016 Dec; 33(12):3054-3064. PubMed ID: 27604223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of a possible partnership among orphan two-component system proteins in cyanobacterium Synechococcus elongatus PCC 7942.
    Kato H; Watanabe S; Nimura-Matsune K; Chibazakura T; Tozawa Y; Yoshikawa H
    Biosci Biotechnol Biochem; 2012; 76(8):1484-91. PubMed ID: 22878191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward rationally redesigning bacterial two-component signaling systems using coevolutionary information.
    Cheng RR; Morcos F; Levine H; Onuchic JN
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):E563-71. PubMed ID: 24449878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.
    Galperin MY; Makarova KS; Wolf YI; Koonin EV
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk and the evolution of specificity in two-component signaling.
    Rowland MA; Deeds EJ
    Proc Natl Acad Sci U S A; 2014 Apr; 111(15):5550-5. PubMed ID: 24706803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized assay for the quantification of histidine kinase autophosphorylation.
    Ueno TB; Johnson RA; Boon EM
    Biochem Biophys Res Commun; 2015 Sep; 465(3):331-7. PubMed ID: 26255967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of specificity in two-component signal transduction.
    Podgornaia AI; Laub MT
    Curr Opin Microbiol; 2013 Apr; 16(2):156-62. PubMed ID: 23352354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus.
    Shi X; Wegener-Feldbrügge S; Huntley S; Hamann N; Hedderich R; Søgaard-Andersen L
    J Bacteriol; 2008 Jan; 190(2):613-24. PubMed ID: 17993514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains.
    Song L; Sudhakar P; Wang W; Conrads G; Brock A; Sun J; Wagner-Döbler I; Zeng AP
    BMC Genomics; 2012 Apr; 13():128. PubMed ID: 22475007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-component signaling systems and cell cycle control in Caulobacter crescentus.
    Purcell EB; Boutte CC; Crosson S
    Adv Exp Med Biol; 2008; 631():122-30. PubMed ID: 18792685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of wolbachia genomes reveals streamlining and divergence of minimalist two-component systems.
    Christensen S; Serbus LR
    G3 (Bethesda); 2015 Mar; 5(5):983-96. PubMed ID: 25809075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of direct residue contacts in protein-protein interaction by message passing.
    Weigt M; White RA; Szurmant H; Hoch JA; Hwa T
    Proc Natl Acad Sci U S A; 2009 Jan; 106(1):67-72. PubMed ID: 19116270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial histidine kinase as signal sensor and transducer.
    Khorchid A; Ikura M
    Int J Biochem Cell Biol; 2006 Mar; 38(3):307-12. PubMed ID: 16242988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of prokaryotic two-component systems: insights from comparative genomics.
    Whitworth DE; Cock PJ
    Amino Acids; 2009 Sep; 37(3):459-66. PubMed ID: 19241119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of two-component systems in bacteria reveals different strategies for niche adaptation.
    Alm E; Huang K; Arkin A
    PLoS Comput Biol; 2006 Nov; 2(11):e143. PubMed ID: 17083272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae.
    Lavín JL; Kiil K; Resano O; Ussery DW; Oguiza JA
    BMC Genomics; 2007 Oct; 8():397. PubMed ID: 17971244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-talk and specificity in two-component signal transduction pathways.
    Agrawal R; Sahoo BK; Saini DK
    Future Microbiol; 2016 May; 11():685-97. PubMed ID: 27159035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.