These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 21573033)

  • 1. Amino Acid Features of P1B-ATPase Heavy Metal Transporters Enabling Small Numbers of Organisms to Cope with Heavy Metal Pollution.
    Ashrafi E; Alemzadeh A; Ebrahimi M; Ebrahimie E; Dadkhodaei N; Ebrahimi M
    Bioinform Biol Insights; 2011 Apr; 5():59-82. PubMed ID: 21573033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in plant heavy metal transporter P1B-ATPases].
    An P; Zhang D; Zhou Z; Han D; Xu Z; Huang W
    Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3020-3030. PubMed ID: 34622614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase.
    Papoyan A; Kochian LV
    Plant Physiol; 2004 Nov; 136(3):3814-23. PubMed ID: 15516513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of genes encoding cadmium pumping P
    Vig I; Benkő Z; Gila BC; Palczert Z; Jakab Á; Nagy F; Miskei M; Lee MK; Yu JH; Pócsi I; Emri T
    Microbiol Spectr; 2023 Sep; 11(5):e0028323. PubMed ID: 37676031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco.
    Keeran NS; Ganesan G; Parida AK
    Transgenic Res; 2017 Apr; 26(2):247-261. PubMed ID: 27888434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases.
    Argüello JM
    J Membr Biol; 2003 Sep; 195(2):93-108. PubMed ID: 14692449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and ion-release mechanism of P
    Grønberg C; Hu Q; Mahato DR; Longhin E; Salustros N; Duelli A; Lyu P; Bågenholm V; Eriksson J; Rao KU; Henderson DI; Meloni G; Andersson M; Croll T; Godaly G; Wang K; Gourdon P
    Elife; 2021 Dec; 10():. PubMed ID: 34951590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational approaches for classification and prediction of P-type ATPase substrate specificity in Arabidopsis.
    Zinati Z; Alemzadeh A; KayvanJoo AH
    Physiol Mol Biol Plants; 2016 Jan; 22(1):163-74. PubMed ID: 27186030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance.
    Zhang J; Zhang M; Shohag MJ; Tian S; Song H; Feng Y; Yang X
    Planta; 2016 Mar; 243(3):577-89. PubMed ID: 26547194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation.
    Yang X; Feng Y; He Z; Stoffella PJ
    J Trace Elem Med Biol; 2005; 18(4):339-53. PubMed ID: 16028496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu
    Purohit R; Ross MO; Batelu S; Kusowski A; Stemmler TL; Hoffman BM; Rosenzweig AC
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2108-2113. PubMed ID: 29440418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue.
    Dutta SJ; Liu J; Hou Z; Mitra B
    Biochemistry; 2006 May; 45(18):5923-31. PubMed ID: 16669635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Heavy metal absorption, transportation and accumulation mechanisms in hyperaccumulator Thlaspi caerulescens].
    Liu G; Chai T; Sun T
    Sheng Wu Gong Cheng Xue Bao; 2010 May; 26(5):561-8. PubMed ID: 20684297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of the metal-transporting P1B-type ATPases.
    Smith AT; Smith KP; Rosenzweig AC
    J Biol Inorg Chem; 2014 Aug; 19(6):947-60. PubMed ID: 24729073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergent biology of facultative heavy metal plants.
    Bothe H; Słomka A
    J Plant Physiol; 2017 Dec; 219():45-61. PubMed ID: 29028613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assay of Copper Transfer and Binding to P1B-ATPases.
    Padilla-Benavides T; Argüello JM
    Methods Mol Biol; 2016; 1377():267-77. PubMed ID: 26695039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray.
    Chiang HC; Lo JC; Yeh KC
    Environ Sci Technol; 2006 Nov; 40(21):6792-8. PubMed ID: 17144312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants.
    Sytar O; Ghosh S; Malinska H; Zivcak M; Brestic M
    Physiol Plant; 2021 Sep; 173(1):148-166. PubMed ID: 33219524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.