These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21573202)

  • 21. Efficient parsimony-based methods for phylogenetic network reconstruction.
    Jin G; Nakhleh L; Snir S; Tuller T
    Bioinformatics; 2007 Jan; 23(2):e123-8. PubMed ID: 17237079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of metabolic networks by gain and loss of enzymatic reaction in eukaryotes.
    Tanaka T; Ikeo K; Gojobori T
    Gene; 2006 Jan; 365():88-94. PubMed ID: 16360290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of functional modules using network topology and high-throughput data.
    Ulitsky I; Shamir R
    BMC Syst Biol; 2007 Jan; 1():8. PubMed ID: 17408515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. leBIBIQBPP: a set of databases and a webtool for automatic phylogenetic analysis of prokaryotic sequences.
    Flandrois JP; Perrière G; Gouy M
    BMC Bioinformatics; 2015 Aug; 16(1):251. PubMed ID: 26264559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Let them fall where they may: congruence analysis in massive phylogenetically messy data sets.
    Leigh JW; Schliep K; Lopez P; Bapteste E
    Mol Biol Evol; 2011 Oct; 28(10):2773-85. PubMed ID: 21527387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting functional associations from metabolism using bi-partite network algorithms.
    Veeramani B; Bader JS
    BMC Syst Biol; 2010 Jul; 4():95. PubMed ID: 20630077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing methods for metabolic network analysis and an application to metabolic engineering.
    Tomar N; De RK
    Gene; 2013 May; 521(1):1-14. PubMed ID: 23537990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins.
    Cho YR; Zhang A
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S3. PubMed ID: 20438650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of hierarchy in bacterial metabolic networks.
    Goodman AJ; Feldman MW
    Biosystems; 2019 Jun; 180():71-78. PubMed ID: 30878498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Bayesian approach to inferring the phylogenetic structure of communities from metagenomic data.
    O'Brien JD; Didelot X; Iqbal Z; Amenga-Etego L; Ahiska B; Falush D
    Genetics; 2014 Jul; 197(3):925-37. PubMed ID: 24793089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm.
    Podell S; Gaasterland T; Allen EE
    BMC Bioinformatics; 2008 Oct; 9():419. PubMed ID: 18840280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deciphering the connectivity structure of biological networks using MixNet.
    Picard F; Miele V; Daudin JJ; Cottret L; Robin S
    BMC Bioinformatics; 2009 Jun; 10 Suppl 6(Suppl 6):S17. PubMed ID: 19534742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method.
    Burger L; van Nimwegen E
    Mol Syst Biol; 2008; 4():165. PubMed ID: 18277381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ancestral state reconstruction of metabolic pathways across pangenome ensembles.
    Psomopoulos FE; van Helden J; Médigue C; Chasapi A; Ouzounis CA
    Microb Genom; 2020 Nov; 6(11):. PubMed ID: 32924924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of Signaling Pathways with RNAi Data and Multiple Reference Networks.
    Alim MA; Ay A; Hasan MM; Thai MT; Kahveci T
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1079-1091. PubMed ID: 30102599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cohesive versus flexible evolution of functional modules in eukaryotes.
    Fokkens L; Snel B
    PLoS Comput Biol; 2009 Jan; 5(1):e1000276. PubMed ID: 19180181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations.
    Buetti-Dinh A; Herold M; Christel S; El Hajjami M; Delogu F; Ilie O; Bellenberg S; Wilmes P; Poetsch A; Sand W; Vera M; Pivkin IV; Friedman R; Dopson M
    BMC Bioinformatics; 2020 Jan; 21(1):23. PubMed ID: 31964336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topological network alignment uncovers biological function and phylogeny.
    Kuchaiev O; Milenkovic T; Memisevic V; Hayes W; Przulj N
    J R Soc Interface; 2010 Sep; 7(50):1341-54. PubMed ID: 20236959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements.
    Iranzo J; Koonin EV; Prangishvili D; Krupovic M
    J Virol; 2016 Dec; 90(24):11043-11055. PubMed ID: 27681128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. OptFlux: an open-source software platform for in silico metabolic engineering.
    Rocha I; Maia P; Evangelista P; Vilaça P; Soares S; Pinto JP; Nielsen J; Patil KR; Ferreira EC; Rocha M
    BMC Syst Biol; 2010 Apr; 4():45. PubMed ID: 20403172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.