BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2157363)

  • 1. Separate effects of Mg2+, MgATP, and ATP4- on the kinetic mechanism for insulin receptor tyrosine kinase.
    Vicario PP; Bennun A
    Arch Biochem Biophys; 1990 Apr; 278(1):99-105. PubMed ID: 2157363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for the regulation of brain adenylate cyclase by ionic equilibria.
    Ohanian H; Borhanian K; de Farias S; Bennun A
    J Bioenerg Biomembr; 1981 Dec; 13(5-6):317-55. PubMed ID: 7334023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of divalent metals in the activation and regulation of insulin receptor tyrosine kinase.
    Vicario PP; Saperstein R; Bennun A
    Biosystems; 1988; 22(1):55-66. PubMed ID: 2847822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do ATP4- and Mg2+ bind stepwise to the F1-ATPase of Halobacterium saccharovorum?
    Schobert B
    Eur J Biochem; 1998 Jun; 254(2):363-70. PubMed ID: 9660192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of bone and osteosarcoma adenylate cyclase. Effects of Mg2+, Ca2+, ATP4- and HATP3- in the assay mixture.
    Rodan SB; Golub EE; Egan JJ; Rodan GA
    Biochem J; 1980 Mar; 185(3):629-37. PubMed ID: 6770847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of divalent metals in the kinetic mechanism of insulin receptor tyrosine kinase.
    Vicario PP; Saperstein R; Bennun A
    Arch Biochem Biophys; 1988 Mar; 261(2):336-45. PubMed ID: 2833165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological concentrations of divalent magnesium ion activate the serine/threonine specific protein kinase ERK2.
    Waas WF; Dalby KN
    Biochemistry; 2003 Mar; 42(10):2960-70. PubMed ID: 12627962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirement for an additional divalent metal cation to activate protein tyrosine kinases.
    Sun G; Budde RJ
    Biochemistry; 1997 Feb; 36(8):2139-46. PubMed ID: 9047313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mg2+ requirements of nonactivated and activated rat liver phosphorylase kinase. Inhibition of the activated form by free Mg2+.
    Chrisman TD; Sobo GE; Exton JH
    FEBS Lett; 1984 Feb; 167(2):295-300. PubMed ID: 6698212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotope partitioning in the adenosine 3',5'-monophosphate dependent protein kinase reaction indicates a steady-state random kinetic mechanism.
    Kong CT; Cook PF
    Biochemistry; 1988 Jun; 27(13):4795-9. PubMed ID: 3048391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic properties of the insulin receptor tyrosine protein kinase: activation through an insulin-stimulated tyrosine-specific, intramolecular autophosphorylation.
    Kwok YC; Nemenoff RA; Powers AC; Avruch J
    Arch Biochem Biophys; 1986 Jan; 244(1):102-13. PubMed ID: 3004334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ATP on phosphofructokinase-2 from Escherichia coli. A mutant enzyme altered in the allosteric site for MgATP.
    Guixé V; Babul J
    J Biol Chem; 1985 Sep; 260(20):11001-5. PubMed ID: 3161887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-sensitive K+ channels in rat pancreatic beta-cells: modulation by ATP and Mg2+ ions.
    Ashcroft FM; Kakei M
    J Physiol; 1989 Sep; 416():349-67. PubMed ID: 2691645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of magnesium on the kinetic properties of bovine heart glycogen synthase D.
    Nakai C; Thomas JA
    J Biol Chem; 1975 Jun; 250(11):4081-6. PubMed ID: 805137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat liver ATP-sulfurylase: purification, kinetic characterization, and interaction with arsenate, selenate, phosphate, and other inorganic oxyanions.
    Yu M; Martin RL; Jain S; Chen LJ; Segel IH
    Arch Biochem Biophys; 1989 Feb; 269(1):156-74. PubMed ID: 2537056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of rat heart adenosine kinase.
    Fisher MN; Newsholme EA
    Biochem J; 1984 Jul; 221(2):521-8. PubMed ID: 6089741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of human erythrocyte hexokinase. Influence of temperature, ATP4- and magnesium ions.
    Rijksen G; Staal GE
    Biochim Biophys Acta; 1976 Dec; 452(2):382-91. PubMed ID: 1009115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state kinetic properties of phosphoglycerate kinase of mung beans.
    Kumar A; Malhotra OP
    Indian J Biochem Biophys; 1990 Oct; 27(5):311-5. PubMed ID: 2079337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of free Mg2+ on the kinetics of human erythrocyte phosphofructokinase.
    Etiemble J; Simeon J; Picat C; Boivin P
    Biochimie; 1981 Jan; 63(1):61-5. PubMed ID: 6452173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rat liver phosphoribosylpyrophosphate synthetase is activated by free Mg2+ in a manner that overcomes its inhibition by nucleotides.
    Sonoda T; Ishizuka T; Ishijima S; Kita K; Ahmad I; Tatibana M
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):32-40. PubMed ID: 9748490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.