BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21573783)

  • 1. Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents.
    Epand RF; Mor A; Epand RM
    Cell Mol Life Sci; 2011 Jul; 68(13):2177-88. PubMed ID: 21573783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial membrane lipids in the action of antimicrobial agents.
    Epand RM; Epand RF
    J Pept Sci; 2011 May; 17(5):298-305. PubMed ID: 21480436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional studies of cochleate assemblies of an oligo-acyl-lysyl with lipid mixtures for combating bacterial multidrug resistance.
    Sarig H; Ohana D; Epand RF; Mor A; Epand RM
    FASEB J; 2011 Oct; 25(10):3336-43. PubMed ID: 21676947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anionic Lipid Clustering Model.
    Epand RM
    Adv Exp Med Biol; 2019; 1117():65-71. PubMed ID: 30980353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Mitchell NJ; Seaton P; Pokorny A
    Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of antimicrobial peptides on the bacterial membrane curvature and vice versa.
    Cardoso MH; de la Fuente-Nunez C; Santos NC; Zasloff MA; Franco OL
    Trends Microbiol; 2024 Jul; 32(7):624-627. PubMed ID: 38777700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics.
    Lohner K; Blondelle SE
    Comb Chem High Throughput Screen; 2005 May; 8(3):241-56. PubMed ID: 15892626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the "charge cluster mechanism" in amphipathic helical cationic antimicrobial peptides.
    Epand RF; Maloy WL; Ramamoorthy A; Epand RM
    Biochemistry; 2010 May; 49(19):4076-84. PubMed ID: 20387900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity.
    Finger S; Kerth A; Dathe M; Blume A
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2998-3006. PubMed ID: 26367060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are the short cationic lipopeptides bacterial membrane disruptors? Structure-Activity Relationship and molecular dynamic evaluation.
    Greber KE; Zielińska J; Nierzwicki Ł; Ciura K; Kawczak P; Nowakowska J; Bączek T; Sawicki W
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):93-99. PubMed ID: 30463703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysyl-phosphatidylglycerol attenuates membrane perturbation rather than surface association of the cationic antimicrobial peptide 6W-RP-1 in a model membrane system: implications for daptomycin resistance.
    Kilelee E; Pokorny A; Yeaman MR; Bayer AS
    Antimicrob Agents Chemother; 2010 Oct; 54(10):4476-9. PubMed ID: 20660664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components.
    Malmsten M
    Curr Top Med Chem; 2016; 16(1):16-24. PubMed ID: 26139113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid composition-dependent membrane fragmentation and pore-forming mechanisms of membrane disruption by pexiganan (MSI-78).
    Lee DK; Brender JR; Sciacca MF; Krishnamoorthy J; Yu C; Ramamoorthy A
    Biochemistry; 2013 May; 52(19):3254-63. PubMed ID: 23590672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial membranes as predictors of antimicrobial potency.
    Epand RM; Rotem S; Mor A; Berno B; Epand RF
    J Am Chem Soc; 2008 Oct; 130(43):14346-52. PubMed ID: 18826221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of membrane targeting antibiotics.
    Epand RM; Walker C; Epand RF; Magarvey NA
    Biochim Biophys Acta; 2016 May; 1858(5):980-7. PubMed ID: 26514603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane.
    Tang YL; Shi YH; Zhao W; Hao G; Le GW
    J Pharm Biomed Anal; 2008 Dec; 48(4):1187-94. PubMed ID: 18926657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial peptides: Cell Membrane and Microbial Surface Interactions.
    Lohner K; Hilpert K
    Biochim Biophys Acta; 2016 May; 1858(5):915-7. PubMed ID: 26965988
    [No Abstract]   [Full Text] [Related]  

  • 18. A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes.
    Kwon B; Waring AJ; Hong M
    Biophys J; 2013 Nov; 105(10):2333-42. PubMed ID: 24268145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide.
    Wenzel M; Schriek P; Prochnow P; Albada HB; Metzler-Nolte N; Bandow JE
    Biochim Biophys Acta; 2016 May; 1858(5):1004-11. PubMed ID: 26603779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of LL-37 human cathelicidin peptide with a model microbial-like lipid membrane.
    Majewska M; Zamlynny V; Pieta IS; Nowakowski R; Pieta P
    Bioelectrochemistry; 2021 Oct; 141():107842. PubMed ID: 34049238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.