BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21573848)

  • 1. New strategies to study the chemical nature of wine oligomeric procyanidins.
    Absalon C; Fabre S; Tarascou I; Fouquet E; Pianet I
    Anal Bioanal Chem; 2011 Sep; 401(5):1485-95. PubMed ID: 21573848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Phloroglucinolysis Protocol and Characterization of Sagrantino Wines Proanthocyanidins.
    Arapitsas P; Perenzoni D; Guella G; Mattivi F
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33669538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.
    Sun B; de Sá M; Leandro C; Caldeira I; Duarte FL; Spranger I
    J Agric Food Chem; 2013 Jan; 61(4):939-46. PubMed ID: 23294371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compositional and sensory characterization of red wine polymers.
    Wollmann N; Hofmann T
    J Agric Food Chem; 2013 Mar; 61(9):2045-61. PubMed ID: 23387831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-aggregation of oxidized procyanidins contributes to the formation of heat-reversible haze in apple-based liqueur wine.
    Millet M; Poupard P; Guilois-Dubois S; Zanchi D; Guyot S
    Food Chem; 2019 Mar; 276():797-805. PubMed ID: 30409665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a molecular interpretation of astringency: synthesis, 3D structure, colloidal state, and human saliva protein recognition of procyanidins.
    Cala O; Fabre S; Pinaud N; Dufourc EJ; Fouquet E; Laguerre M; Pianet I
    Planta Med; 2011 Jul; 77(11):1116-22. PubMed ID: 21412697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and quantification of oligomeric pyranoanthocyanin-flavanol pigments from red wines by combination of column chromatographic techniques.
    He J; Santos-Buelga C; Mateus N; de Freitas V
    J Chromatogr A; 2006 Nov; 1134(1-2):215-25. PubMed ID: 16997314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligomeric proanthocyanidins from mangosteen pericarps.
    Fu C; Loo AE; Chia FP; Huang D
    J Agric Food Chem; 2007 Sep; 55(19):7689-94. PubMed ID: 17715900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid preparation of procyanidins B2 and C1 from Granny Smith apples by using low pressure column chromatography and identification of their oligomeric procyanidins.
    Xiao JS; Liu L; Wu H; Xie BJ; Yang EN; Sun ZD
    J Agric Food Chem; 2008 Mar; 56(6):2096-101. PubMed ID: 18298060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of condensed tannins addition on the astringency of red wines.
    Soares S; Sousa A; Mateus N; de Freitas V
    Chem Senses; 2012 Feb; 37(2):191-8. PubMed ID: 22086902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins.
    Fernández K; Kennedy JA; Agosin E
    J Agric Food Chem; 2007 May; 55(9):3675-80. PubMed ID: 17407309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometry in grape and wine chemistry. Part I: polyphenols.
    Flamini R
    Mass Spectrom Rev; 2003; 22(4):218-50. PubMed ID: 12884388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant oligomeric proanthocyanidins from sea buckthorn (Hippophae rhamnoides) Pomace.
    Rösch D; Mügge C; Fogliano V; Kroh LW
    J Agric Food Chem; 2004 Nov; 52(22):6712-8. PubMed ID: 15506806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of gas chromatography-coupled time-of-flight mass spectrometry and 1H nuclear magnetic resonance spectroscopy metabolite identification in white wines from a sensory study investigating wine body.
    Skogerson K; Runnebaum R; Wohlgemuth G; de Ropp J; Heymann H; Fiehn O
    J Agric Food Chem; 2009 Aug; 57(15):6899-907. PubMed ID: 19588931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the mean degree of polymerization of proanthocyanidins in red wines using liquid chromatography-mass spectrometry (LC-MS).
    González-Manzano S; Santos-Buelga C; Pérez-Alonso JJ; Rivas-Gonzalo JC; Escribano-Bailón MT
    J Agric Food Chem; 2006 Jun; 54(12):4326-32. PubMed ID: 16756363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical dereplication of wine stilbenoids using high performance liquid chromatography-nuclear magnetic resonance spectroscopy.
    Pawlus AD; Cantos-Villar E; Richard T; Bisson J; Poupard P; Papastamoulis Y; Monti JP; Teissedre PL; Waffo-Téguo P; Mérillon JM
    J Chromatogr A; 2013 May; 1289():19-26. PubMed ID: 23566915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red wine tannins fluidify and precipitate lipid liposomes and bicelles. A role for lipids in wine tasting?
    Furlan AL; Castets A; Nallet F; Pianet I; Grélard A; Dufourc EJ; Géan J
    Langmuir; 2014 May; 30(19):5518-26. PubMed ID: 24787144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new class of anthocyanin-procyanidin condensation products detected in red wine by electrospray ionization multi-stage mass spectrometry analysis.
    Sun B; Fernandes TA; Spranger MI
    Rapid Commun Mass Spectrom; 2010 Feb; 24(3):254-60. PubMed ID: 20049894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity.
    Es-Safi NE; Guyot S; Ducrot PH
    J Agric Food Chem; 2006 Sep; 54(19):6969-77. PubMed ID: 16968050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine.
    Hufnagel JC; Hofmann T
    J Agric Food Chem; 2008 Feb; 56(4):1376-86. PubMed ID: 18193832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.