BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 21573880)

  • 1. Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered.
    Moustafa A; Sugiyama T; Prasad J; Zaman G; Gross TS; Lanyon LE; Price JS
    Osteoporos Int; 2012 Apr; 23(4):1225-34. PubMed ID: 21573880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading.
    Tu X; Rhee Y; Condon KW; Bivi N; Allen MR; Dwyer D; Stolina M; Turner CH; Robling AG; Plotkin LI; Bellido T
    Bone; 2012 Jan; 50(1):209-17. PubMed ID: 22075208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disuse rescues the age-impaired adaptive response to external loading in mice.
    Meakin LB; Delisser PJ; Galea GL; Lanyon LE; Price JS
    Osteoporos Int; 2015 Nov; 26(11):2703-8. PubMed ID: 25920749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin.
    Robling AG; Niziolek PJ; Baldridge LA; Condon KW; Allen MR; Alam I; Mantila SM; Gluhak-Heinrich J; Bellido TM; Harris SE; Turner CH
    J Biol Chem; 2008 Feb; 283(9):5866-75. PubMed ID: 18089564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of Wnt Signaling by Mechanical Loading Is Impaired in the Bone of Old Mice.
    Holguin N; Brodt MD; Silva MJ
    J Bone Miner Res; 2016 Dec; 31(12):2215-2226. PubMed ID: 27357062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element.
    De Souza RL; Matsuura M; Eckstein F; Rawlinson SC; Lanyon LE; Pitsillides AA
    Bone; 2005 Dec; 37(6):810-8. PubMed ID: 16198164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical load increases in bone formation via a sclerostin-independent pathway.
    Morse A; McDonald MM; Kelly NH; Melville KM; Schindeler A; Kramer I; Kneissel M; van der Meulen MC; Little DG
    J Bone Miner Res; 2014 Nov; 29(11):2456-67. PubMed ID: 24821585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mouse fibula as a suitable bone for the study of functional adaptation to mechanical loading.
    Moustafa A; Sugiyama T; Saxon LK; Zaman G; Sunters A; Armstrong VJ; Javaheri B; Lanyon LE; Price JS
    Bone; 2009 May; 44(5):930-5. PubMed ID: 19442626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sclerostin's role in bone's adaptive response to mechanical loading.
    Galea GL; Lanyon LE; Price JS
    Bone; 2017 Mar; 96():38-44. PubMed ID: 27742499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sclerostin is differently immunolocalized in metaphyseal trabecules and cortical bones of mouse tibiae.
    Hasegawa T; Amizuka N; Yamada T; Liu Z; Miyamoto Y; Yamamoto T; Sasaki M; Hongo H; Suzuki R; de Freitas PH; Yamamoto T; Oda K; Li M
    Biomed Res; 2013 Jun; 34(3):153-9. PubMed ID: 23782749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of Gsα in osteocytes leads to osteopenia due to sclerostin induced suppression of osteoblast activity.
    Fulzele K; Dedic C; Lai F; Bouxsein M; Lotinun S; Baron R; Divieti Pajevic P
    Bone; 2018 Dec; 117():138-148. PubMed ID: 30266511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro.
    Spatz JM; Wein MN; Gooi JH; Qu Y; Garr JL; Liu S; Barry KJ; Uda Y; Lai F; Dedic C; Balcells-Camps M; Kronenberg HM; Babij P; Pajevic PD
    J Biol Chem; 2015 Jul; 290(27):16744-58. PubMed ID: 25953900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteocyte TSC1 promotes sclerostin secretion to restrain osteogenesis in mice.
    Liu W; Wang Z; Yang J; Wang Y; Li K; Huang B; Yan B; Wang T; Li M; Zou Z; Yang J; Xiao G; Cui ZK; Liu A; Bai X
    Open Biol; 2019 May; 9(5):180262. PubMed ID: 31088250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sympathetic nervous system does not mediate the load-induced cortical new bone formation.
    de Souza RL; Pitsillides AA; Lanyon LE; Skerry TM; Chenu C
    J Bone Miner Res; 2005 Dec; 20(12):2159-68. PubMed ID: 16294269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading.
    Spatz JM; Ellman R; Cloutier AM; Louis L; van Vliet M; Suva LJ; Dwyer D; Stolina M; Ke HZ; Bouxsein ML
    J Bone Miner Res; 2013 Apr; 28(4):865-74. PubMed ID: 23109229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PTHrP-Derived Peptides Restore Bone Mass and Strength in Diabetic Mice: Additive Effect of Mechanical Loading.
    Maycas M; McAndrews KA; Sato AY; Pellegrini GG; Brown DM; Allen MR; Plotkin LI; Gortazar AR; Esbrit P; Bellido T
    J Bone Miner Res; 2017 Mar; 32(3):486-497. PubMed ID: 27683064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles?
    Sapir-Koren R; Livshits G
    Osteoporos Int; 2014 Dec; 25(12):2685-700. PubMed ID: 25030653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant sclerostin antagonizes effects of ex vivo mechanical loading in trabecular bone and increases osteocyte lacunar size.
    Kogawa M; Khalid KA; Wijenayaka AR; Ormsby RT; Evdokiou A; Anderson PH; Findlay DM; Atkins GJ
    Am J Physiol Cell Physiol; 2018 Jan; 314(1):C53-C61. PubMed ID: 28978523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone.
    Noble BS; Peet N; Stevens HY; Brabbs A; Mosley JR; Reilly GC; Reeve J; Skerry TM; Lanyon LE
    Am J Physiol Cell Physiol; 2003 Apr; 284(4):C934-43. PubMed ID: 12477665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteocytes reflect a pro-inflammatory state following spinal cord injury in a rodent model.
    Metzger CE; Gong S; Aceves M; Bloomfield SA; Hook MA
    Bone; 2019 Mar; 120():465-475. PubMed ID: 30550849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.