These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21574003)

  • 21. Behaviour of fish by-catch in the mouth of a crustacean trawl.
    Queirolo D; Gaete E; Montenegro I; Soriguer MC; Erzini K
    J Fish Biol; 2012 Jun; 80(7):2517-27. PubMed ID: 22650431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen consumption of drift-feeding rainbow trout: the energetic tradeoff between locomotion and feeding in flow.
    Johansen JL; Akanyeti O; Liao JC
    J Exp Biol; 2020 Jun; 223(Pt 12):. PubMed ID: 32591340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Group swimming behaviour and energetics in bluegill Lepomis macrochirus and rainbow trout Oncorhynchus mykiss.
    Currier M; Rouse J; Coughlin DJ
    J Fish Biol; 2021 Apr; 98(4):1105-1111. PubMed ID: 33277926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Turbulence induces metabolically costly behaviors and inhibits food capture in oyster larvae, causing net energy loss.
    Fuchs HL; Specht JA; Adams DK; Christman AJ
    J Exp Biol; 2017 Oct; 220(Pt 19):3419-3431. PubMed ID: 28978637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.
    Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV
    Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renewable fluid dynamic energy derived from aquatic animal locomotion.
    Dabiri JO
    Bioinspir Biomim; 2007 Sep; 2(3):L1-3. PubMed ID: 17848785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fish Swimming in a Kármán Vortex Street: Kinematics, Sensory Biology and Energetics.
    Liao JC; Akanyeti O
    Mar Technol Soc J; 2017; 51(5):48-55. PubMed ID: 30631214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excess postexercise oxygen consumption decreases with swimming duration in a labriform fish: Integrating aerobic and anaerobic metabolism across time.
    Cordero GA; Methling C; Tirsgaard B; Steffensen JF; Domenici P; Svendsen JC
    J Exp Zool A Ecol Integr Physiol; 2019 Dec; 331(10):577-586. PubMed ID: 31692282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of acoustic alarms, designed to reduce small cetacean bycatch in gillnet fisheries, on the behaviour of North Sea fish species in a large tank.
    Kastelein RA; van der Heul S; van der Veen J; Verboom WC; Jennings N; de Haan D; Reijnders PJ
    Mar Environ Res; 2007 Aug; 64(2):160-80. PubMed ID: 17316783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Turbulence triggers vigorous swimming but hinders motion strategy in planktonic copepods.
    Michalec FG; Souissi S; Holzner M
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25904528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability versus Maneuvering: Challenges for Stability during Swimming by Fishes.
    Webb PW; Weihs D
    Integr Comp Biol; 2015 Oct; 55(4):753-64. PubMed ID: 26002562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the energetics and stability of a minimal fish school.
    Li G; Kolomenskiy D; Liu H; Thiria B; Godoy-Diana R
    PLoS One; 2019; 14(8):e0215265. PubMed ID: 31461457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal swimming speed in head currents and effects on distance movement of winter-migrating fish.
    Brodersen J; Nilsson PA; Ammitzbøll J; Hansson LA; Skov C; Brönmark C
    PLoS One; 2008 May; 3(5):e2156. PubMed ID: 18478053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of the flow turbulence on the movement pattern of the caudal fin in fish.
    Pavlov DS; Skorobogatov MA
    Dokl Biol Sci; 2009; 428():464-6. PubMed ID: 19994792
    [No Abstract]   [Full Text] [Related]  

  • 36. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What do warming waters mean for fish physiology and fisheries?
    Little AG; Loughland I; Seebacher F
    J Fish Biol; 2020 Aug; 97(2):328-340. PubMed ID: 32441327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exercise performance of fish.
    Webb PW
    Adv Vet Sci Comp Med; 1994; 38B():1-49. PubMed ID: 7810375
    [No Abstract]   [Full Text] [Related]  

  • 39. Altered swimming performance of a benthic fish (Erimyzon sucetta) exposed to contaminated sediments.
    Hopkins WA; Snodgrass JW; Staub BP; Jackson BP; Congdon JD
    Arch Environ Contam Toxicol; 2003 Apr; 44(3):383-9. PubMed ID: 12712299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism-speed curve in fishes.
    Di Santo V; Kenaley CP; Lauder GV
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):13048-13053. PubMed ID: 29158392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.