These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21574077)

  • 1. Computational modelling of the natural hip: a review of finite element and multibody simulations.
    Stops A; Wilcox R; Jin Z
    Comput Methods Biomech Biomed Engin; 2012; 15(9):963-79. PubMed ID: 21574077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the lateral rotators on load transfer in the human hip joint revealed by mechanical analysis.
    Weißgraeber P; V D Wall H; Khabbazeh S; Kroker AM; Becker W
    Ann Anat; 2012 Sep; 194(5):461-6. PubMed ID: 22694841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of individual muscles to hip joint contact force in normal walking.
    Correa TA; Crossley KM; Kim HJ; Pandy MG
    J Biomech; 2010 May; 43(8):1618-22. PubMed ID: 20176362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale biomechanics of the biphasic articular cartilage in the natural hip joint during routine activities.
    Hua X; Li J; De Pieri E; Ferguson SJ
    Comput Methods Programs Biomed; 2022 Mar; 215():106606. PubMed ID: 35016083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computationally efficient finite element evaluation of natural patellofemoral mechanics.
    Fitzpatrick CK; Baldwin MA; Rullkoetter PJ
    J Biomech Eng; 2010 Dec; 132(12):121013. PubMed ID: 21142327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A subject specific multibody model of the knee with menisci.
    Guess TM; Thiagarajan G; Kia M; Mishra M
    Med Eng Phys; 2010 Jun; 32(5):505-15. PubMed ID: 20359933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular hip biomechanics and pathology in the athlete.
    Torry MR; Schenker ML; Martin HD; Hogoboom D; Philippon MJ
    Clin Sports Med; 2006 Apr; 25(2):179-97, vii. PubMed ID: 16638486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip.
    Anderson AE; Ellis BJ; Maas SA; Weiss JA
    J Biomech; 2010 May; 43(7):1351-7. PubMed ID: 20176359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size.
    Woldtvedt DJ; Womack W; Gadomski BC; Schuldt D; Puttlitz CM
    J Biomech Eng; 2011 Jun; 133(6):061009. PubMed ID: 21744929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of finite element predictions of cartilage contact pressure in the human hip joint.
    Anderson AE; Ellis BJ; Maas SA; Peters CL; Weiss JA
    J Biomech Eng; 2008 Oct; 130(5):051008. PubMed ID: 19045515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth.
    Kainz H; Killen BA; Wesseling M; Perez-Boerema F; Pitto L; Garcia Aznar JM; Shefelbine S; Jonkers I
    PLoS One; 2020; 15(7):e0235966. PubMed ID: 32702015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of the tibio-femoral response to finite element modeling parameters.
    Beillas P; Lee SW; Tashman S; Yang KH
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):209-21. PubMed ID: 17558649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Stress distribution on the femoral neck at different abduction angles of the hip joint: a finite element analysis].
    Zhang MC; Shi FL; Zhao WD; Ouyang J; Zhong SZ
    Di Yi Jun Yi Da Xue Xue Bao; 2005 Oct; 25(10):1244-6. PubMed ID: 16234099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant pelvis and hip kinematics impair hip loading before and after total hip replacement.
    Lenaerts G; Mulier M; Spaepen A; Van der Perre G; Jonkers I
    Gait Posture; 2009 Oct; 30(3):296-302. PubMed ID: 19560359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress and strain analysis of the hip joint using FEM.
    Vaverka M; Návrat TS; Vrbka M; Florian Z; Fuis V
    Technol Health Care; 2006; 14(4-5):271-9. PubMed ID: 17065750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.
    Fernandez JW; Hunter PJ
    Biomech Model Mechanobiol; 2005 Aug; 4(1):20-38. PubMed ID: 15959816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait.
    Lenaerts G; Bartels W; Gelaude F; Mulier M; Spaepen A; Van der Perre G; Jonkers I
    J Biomech; 2009 Jun; 42(9):1246-51. PubMed ID: 19464012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F; Dumas R; Cheze L; Wang X
    J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulations of the 3D virtual model of the human hip joint, using finite element method.
    Grecu D; Pucalev I; Negru M; Tarniţă DN; Ionovici N; Diţă R
    Rom J Morphol Embryol; 2010; 51(1):151-5. PubMed ID: 20191136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.