BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21574238)

  • 1. The transaldolase family: new synthetic opportunities from an ancient enzyme scaffold.
    Samland AK; Rale M; Sprenger GA; Fessner WD
    Chembiochem; 2011 Jul; 12(10):1454-74. PubMed ID: 21574238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in stereoselective synthesis with aldolases.
    Clapés P; Fessner WD; Sprenger GA; Samland AK
    Curr Opin Chem Biol; 2010 Apr; 14(2):154-67. PubMed ID: 20071212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadening deoxysugar glycodiversity: natural and engineered transaldolases unlock a complementary substrate space.
    Rale M; Schneider S; Sprenger GA; Samland AK; Fessner WD
    Chemistry; 2011 Feb; 17(9):2623-32. PubMed ID: 21290439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redesigning the active site of transaldolase TalB from Escherichia coli: new variants with improved affinity towards nonphosphorylated substrates.
    Schneider S; Gutiérrez M; Sandalova T; Schneider G; Clapés P; Sprenger GA; Samland AK
    Chembiochem; 2010 Mar; 11(5):681-90. PubMed ID: 20148428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transaldolase: from biochemistry to human disease.
    Samland AK; Sprenger GA
    Int J Biochem Cell Biol; 2009 Jul; 41(7):1482-94. PubMed ID: 19401148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial aldolases and transketolases: new biocatalytic approaches to simple and complex sugars.
    Takayama S; McGarvey GJ; Wong CH
    Annu Rev Microbiol; 1997; 51():285-310. PubMed ID: 9343352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases.
    Schurmann M; Sprenger GA
    J Biol Chem; 2001 Apr; 276(14):11055-61. PubMed ID: 11120740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data.
    Tittmann K
    Bioorg Chem; 2014 Dec; 57():263-280. PubMed ID: 25267444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transaldolase of Methanocaldococcus jannaschii.
    Soderberg T; Alver RC
    Archaea; 2004 Oct; 1(4):255-62. PubMed ID: 15810435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of biocatalytic processes.
    Hibbert EG; Baganz F; Hailes HC; Ward JM; Lye GJ; Woodley JM; Dalby PA
    Biomol Eng; 2005 Jun; 22(1-3):11-9. PubMed ID: 15857779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel mode of inhibition by D-tagatose 6-phosphate through a Heyns rearrangement in the active site of transaldolase B variants.
    Stellmacher L; Sandalova T; Schneider S; Schneider G; Sprenger GA; Samland AK
    Acta Crystallogr D Struct Biol; 2016 Apr; 72(Pt 4):467-76. PubMed ID: 27050126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational methods for functional site identification suggest a substrate access channel in transaldolase.
    Silberstein M; Landon MR; Wang YE; Perl A; Vajda S
    Genome Inform; 2006; 17(1):13-22. PubMed ID: 17503352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adherence to Bürgi-Dunitz stereochemical principles requires significant structural rearrangements in Schiff-base formation: insights from transaldolase complexes.
    Light SH; Minasov G; Duban ME; Anderson WF
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):544-52. PubMed ID: 24531488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering aldolases for asymmetric synthesis.
    Widersten M
    Methods Enzymol; 2020; 644():149-167. PubMed ID: 32943143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase.
    Jennewein S; Schürmann M; Wolberg M; Hilker I; Luiten R; Wubbolts M; Mink D
    Biotechnol J; 2006 May; 1(5):537-48. PubMed ID: 16892289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial aldolases as C-C bonding enzymes--unknown treasures and new developments.
    Samland AK; Sprenger GA
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):253-64. PubMed ID: 16614860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Threonine aldolases: perspectives in engineering and screening the enzymes with enhanced substrate and stereo specificities.
    Fesko K
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2579-90. PubMed ID: 26810201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the reduced Schiff-base intermediate complex of transaldolase B from Escherichia coli: mechanistic implications for class I aldolases.
    Jia J; Schörken U; Lindqvist Y; Sprenger GA; Schneider G
    Protein Sci; 1997 Jan; 6(1):119-24. PubMed ID: 9007983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of decameric fructose-6-phosphate aldolase from Escherichia coli reveals inter-subunit helix swapping as a structural basis for assembly differences in the transaldolase family.
    Thorell S; Schürmann M; Sprenger GA; Schneider G
    J Mol Biol; 2002 May; 319(1):161-71. PubMed ID: 12051943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threonine aldolases.
    Franz SE; Stewart JD
    Adv Appl Microbiol; 2014; 88():57-101. PubMed ID: 24767426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.