BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 21574576)

  • 1. Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching.
    An B; Hinman MB; Holland GP; Yarger JL; Lewis RV
    Biomacromolecules; 2011 Jun; 12(6):2375-81. PubMed ID: 21574576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducing natural spider silks' copolymer behavior in synthetic silk mimics.
    An B; Jenkins JE; Sampath S; Holland GP; Hinman M; Yarger JL; Lewis R
    Biomacromolecules; 2012 Dec; 13(12):3938-48. PubMed ID: 23110450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E; Hsia Y; Yarger JL; Weber W; Lin-Cereghino J; Lin-Cereghino G; Tang S; Agari K; Vierra C
    Biomacromolecules; 2012 Feb; 13(2):304-12. PubMed ID: 22176138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers.
    Teulé F; Addison B; Cooper AR; Ayon J; Henning RW; Benmore CJ; Holland GP; Yarger JL; Lewis RV
    Biopolymers; 2012 Jun; 97(6):418-31. PubMed ID: 22012252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant Production, Characterization, and Fiber Spinning of an Engineered Short Major Ampullate Spidroin (MaSp1s).
    Thamm C; Scheibel T
    Biomacromolecules; 2017 Apr; 18(4):1365-1372. PubMed ID: 28233980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of Biomimetic Artificial Spider Silk Fibers Tuned by PostSpin Bath Incubation.
    Greco G; Francis J; Arndt T; Schmuck B; G Bäcklund F; Barth A; Johansson J; M Pugno N; Rising A
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers.
    Albertson AE; Teulé F; Weber W; Yarger JL; Lewis RV
    J Mech Behav Biomed Mater; 2014 Jan; 29():225-34. PubMed ID: 24113297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia.
    Brooks AE; Steinkraus HB; Nelson SR; Lewis RV
    Biomacromolecules; 2005; 6(6):3095-9. PubMed ID: 16283732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms.
    Zhu Z; Kikuchi Y; Kojima K; Tamura T; Kuwabara N; Nakamura T; Asakura T
    J Biomater Sci Polym Ed; 2010; 21(3):395-411. PubMed ID: 20178693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and physical properties of recombinant spider silk films using organic and aqueous solvents.
    Tucker CL; Jones JA; Bringhurst HN; Copeland CG; Addison JB; Weber WS; Mou Q; Yarger JL; Lewis RV
    Biomacromolecules; 2014 Aug; 15(8):3158-70. PubMed ID: 25030809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altering the mechanics of spider silk through methanol post-spin drawing.
    Brooks AE; Creager MS; Lewis RV
    Biomed Sci Instrum; 2005; 41():1-6. PubMed ID: 15850073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-in-One Spider Silk Protein with Combined Mechanical Features in All-Aqueous Spun Fibers.
    Saric M; Scheibel T
    Biomacromolecules; 2023 Apr; 24(4):1744-1750. PubMed ID: 36913547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant minimalist spider wrapping silk proteins capable of native-like fiber formation.
    Xu L; Rainey JK; Meng Q; Liu XQ
    PLoS One; 2012; 7(11):e50227. PubMed ID: 23209681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural conversion of the spidroin C-terminal domain during assembly of spider silk fibers.
    De Oliveira DH; Gowda V; Sparrman T; Gustafsson L; Sanches Pires R; Riekel C; Barth A; Lendel C; Hedhammar M
    Nat Commun; 2024 May; 15(1):4670. PubMed ID: 38821983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization and mechanical properties of chimeric Masp1/Flag minispidroins.
    Xu S; Li X; Zhou Y; Lin Y; Meng Q
    Biochimie; 2020 Jan; 168():251-258. PubMed ID: 31783091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the second type of aciniform spidroin (AcSp2) provides new insight into design for spidroin-based biomaterials.
    Wen R; Wang K; Meng Q
    Acta Biomater; 2020 Oct; 115():210-219. PubMed ID: 32798722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.
    Adrianos SL; Teulé F; Hinman MB; Jones JA; Weber WS; Yarger JL; Lewis RV
    Biomacromolecules; 2013 Jun; 14(6):1751-60. PubMed ID: 23646825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk.
    Weatherbee-Martin N; Xu L; Hupe A; Kreplak L; Fudge DS; Liu XQ; Rainey JK
    Biomacromolecules; 2016 Aug; 17(8):2737-46. PubMed ID: 27387592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel nanocomposites from spider silk-silica fusion (chimeric) proteins.
    Wong Po Foo C; Patwardhan SV; Belton DJ; Kitchel B; Anastasiades D; Huang J; Naik RR; Perry CC; Kaplan DL
    Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9428-33. PubMed ID: 16769898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.