These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21574581)

  • 1. Translocation of single-wall carbon nanotubes through solid-state nanopores.
    Hall AR; Keegstra JM; Duch MC; Hersam MC; Dekker C
    Nano Lett; 2011 Jun; 11(6):2446-50. PubMed ID: 21574581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring single-wall carbon nanotubes with solid-state nanopores.
    Hall AR; Keegstra JM; Duch MC; Hersam MC; Dekker C
    Methods Mol Biol; 2012; 870():227-39. PubMed ID: 22528267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.
    Samanta SK; Fritsch M; Scherf U; Gomulya W; Bisri SZ; Loi MA
    Acc Chem Res; 2014 Aug; 47(8):2446-56. PubMed ID: 25025887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and mechanical modification of single-walled carbon nanotubes by binding to porphyrin oligomers.
    Stranks SD; Sprafke JK; Anderson HL; Nicholas RJ
    ACS Nano; 2011 Mar; 5(3):2307-15. PubMed ID: 21355592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic Force Microscopy of DNA-wrapped Single-walled Carbon Nanotubes in Aqueous Solution.
    Hayashida T; Umemura K
    Colloids Surf B Biointerfaces; 2016 Jul; 143():526-531. PubMed ID: 27045980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor.
    Liu L; Yang C; Zhao K; Li J; Wu HC
    Nat Commun; 2013; 4():2989. PubMed ID: 24352224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled formation of carbon nanotube junctions via linker-induced assembly in aqueous solution.
    Palma M; Wang W; Penzo E; Brathwaite J; Zheng M; Hone J; Nuckolls C; Wind SJ
    J Am Chem Soc; 2013 Jun; 135(23):8440-3. PubMed ID: 23656193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diameter-dependent solubility of single-walled carbon nanotubes.
    Duque JG; Parra-Vasquez AN; Behabtu N; Green MJ; Higginbotham AL; Price BK; Leonard AD; Schmidt HK; Lounis B; Tour JM; Doorn SK; Cognet L; Pasquali M
    ACS Nano; 2010 Jun; 4(6):3063-72. PubMed ID: 20521799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size evolution and surface characterization of solid-state nanopores in different aqueous solutions.
    Li Q; Zhao Q; Lu B; Zhang H; Liu S; Tang Z; Qu L; Zhu R; Zhang J; You L; Yang F; Yu D
    Nanoscale; 2012 Mar; 4(5):1572-6. PubMed ID: 22314312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes.
    Mackeyev YA; Marks JW; Rosenblum MG; Wilson LJ
    J Phys Chem B; 2005 Mar; 109(12):5482-4. PubMed ID: 16851586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A One-Step Chemical Strategy for the Formation of Carbon Nanotube Junctions in Aqueous Solution: Reaction of DNA-Wrapped Carbon Nanotubes with Diazonium Salts.
    Clément P; Trinchera P; Cervantes-Salguero K; Ye Q; Jones CR; Palma M
    Chempluschem; 2019 Sep; 84(9):1235-1238. PubMed ID: 31944048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient solubilization of single-walled carbon nanotubes using tea solutions.
    Nakamura G; Tanaka Y; Niidome Y; Nakashima N
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3815-21. PubMed ID: 20355373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of surfactant and boron doping on the BWF feature in the Raman spectrum of single-wall carbon nanotube aqueous dispersions.
    Blackburn JL; Engtrakul C; McDonald TJ; Dillon AC; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25551-8. PubMed ID: 17166007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopy of single- and double-wall carbon nanotubes in different environments.
    Hertel T; Hagen A; Talalaev V; Arnold K; Hennrich F; Kappes M; Rosenthal S; McBride J; Ulbricht H; Flahaut E
    Nano Lett; 2005 Mar; 5(3):511-4. PubMed ID: 15755104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer.
    Ma Y; Cheung W; Wei D; Bogozi A; Chiu PL; Wang L; Pontoriero F; Mendelsohn R; He H
    ACS Nano; 2008 Jun; 2(6):1197-204. PubMed ID: 19206337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishable populations report on the interactions of single DNA molecules with solid-state nanopores.
    van den Hout M; Krudde V; Janssen XJ; Dekker NH
    Biophys J; 2010 Dec; 99(11):3840-8. PubMed ID: 21112309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled transport of DNA through a Y-shaped carbon nanotube in a solid membrane.
    Luan B; Zhou B; Huynh T; Zhou R
    Nanoscale; 2014 Oct; 6(19):11479-83. PubMed ID: 25154639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled precipitation of solubilized carbon nanotubes by delamination of DNA.
    Chen RJ; Zhang Y
    J Phys Chem B; 2006 Jan; 110(1):54-7. PubMed ID: 16471498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.