BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21574591)

  • 1. Reduced fluorescence lifetime heterogeneity of 5-fluorotryptophan in comparison to tryptophan in proteins: implication for resonance energy transfer experiments.
    Sarkar SS; Udgaonkar JB; Krishnamoorthy G
    J Phys Chem B; 2011 Jun; 115(22):7479-86. PubMed ID: 21574591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure is lost incrementally during the unfolding of barstar.
    Lakshmikanth GS; Sridevi K; Krishnamoorthy G; Udgaonkar JB
    Nat Struct Biol; 2001 Sep; 8(9):799-804. PubMed ID: 11524685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface expansion is independent of and occurs faster than core solvation during the unfolding of barstar.
    Sridevi K; Udgaonkar JB
    Biochemistry; 2003 Feb; 42(6):1551-63. PubMed ID: 12578368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of the size of the initially collapsed form during the refolding of barstar on denaturant concentration: evidence for a continuous transition.
    Sinha KK; Udgaonkar JB
    J Mol Biol; 2005 Oct; 353(3):704-18. PubMed ID: 16188274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo synthesized proteins with monoexponential fluorescence decay kinetics.
    Broos J; Maddalena F; Hesp BH
    J Am Chem Soc; 2004 Jan; 126(1):22-3. PubMed ID: 14709040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the non-specific and specific components of the initial folding reaction of barstar by multi-site FRET measurements.
    Sinha KK; Udgaonkar JB
    J Mol Biol; 2007 Jul; 370(2):385-405. PubMed ID: 17512542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionization potentials of fluoroindoles and the origin of nonexponential tryptophan fluorescence decay in proteins.
    Liu T; Callis PR; Hesp BH; de Groot M; Buma WJ; Broos J
    J Am Chem Soc; 2005 Mar; 127(11):4104-13. PubMed ID: 15771548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of tryptophan mutants of barstar: evidence for an initial hydrophobic collapse on the folding pathway.
    Nath U; Udgaonkar JB
    Biochemistry; 1997 Jul; 36(28):8602-10. PubMed ID: 9214306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5-fluorotryptophan as dual probe for ground-state heterogeneity and excited-state dynamics in apoflavodoxin.
    Visser NV; Westphal AH; Nabuurs SM; van Hoek A; van Mierlo CP; Visser AJ; Broos J; van Amerongen H
    FEBS Lett; 2009 Sep; 583(17):2785-8. PubMed ID: 19619543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple tryptophan probes reveal that ubiquitin folds via a late misfolded intermediate.
    Vallée-Bélisle A; Michnick SW
    J Mol Biol; 2007 Nov; 374(3):791-805. PubMed ID: 17949746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain.
    Sridevi K; Juneja J; Bhuyan AK; Krishnamoorthy G; Udgaonkar JB
    J Mol Biol; 2000 Sep; 302(2):479-95. PubMed ID: 10970747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan as a probe for acid-base equilibria in peptides.
    Marquezin CA; Hirata IY; Juliano L; Ito AS
    Biopolymers; 2003; 71(5):569-76. PubMed ID: 14635097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical evaluation of the two-state model describing the equilibrium unfolding of the PI3K SH3 domain by time-resolved fluorescence resonance energy transfer.
    Kishore M; Krishnamoorthy G; Udgaonkar JB
    Biochemistry; 2013 Dec; 52(52):9482-96. PubMed ID: 24325755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aminotryptophan-containing barstar: structure--function tradeoff in protein design and engineering with an expanded genetic code.
    Rubini M; Lepthien S; Golbik R; Budisa N
    Biochim Biophys Acta; 2006 Jul; 1764(7):1147-58. PubMed ID: 16782415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of intra-molecular distances and site-specific dynamics in chemically unfolded barstar: evidence for denaturant-dependent non-random structure.
    Saxena AM; Udgaonkar JB; Krishnamoorthy G
    J Mol Biol; 2006 May; 359(1):174-89. PubMed ID: 16603185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach to interpretation of heterogeneity of fluorescence decay: effect of induced tautomeric shift and enzyme-->ligand fluorescence resonance energy transfer.
    Wlodarczyk J; Kierdaszuk B
    Biophys Chem; 2006 Sep; 123(2-3):146-53. PubMed ID: 16765509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan-BODIPY: a versatile donor-acceptor pair for probing generic changes of intraprotein distances.
    Olofsson M; Kalinin S; Zdunek J; Oliveberg M; Johansson LB
    Phys Chem Chem Phys; 2006 Jul; 8(26):3130-40. PubMed ID: 16804615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general approach for detecting folding intermediates from steady-state and time-resolved fluorescence of single-tryptophan-containing proteins.
    Laptenok SP; Visser NV; Engel R; Westphal AH; van Hoek A; van Mierlo CP; van Stokkum IH; van Amerongen H; Visser AJ
    Biochemistry; 2011 May; 50(17):3441-50. PubMed ID: 21425856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.