These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 21574609)
1. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity. Soboleva T; Malek K; Xie Z; Navessin T; Holdcroft S ACS Appl Mater Interfaces; 2011 Jun; 3(6):1827-37. PubMed ID: 21574609 [TBL] [Abstract][Full Text] [Related]
2. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. Soboleva T; Zhao X; Malek K; Xie Z; Navessin T; Holdcroft S ACS Appl Mater Interfaces; 2010 Feb; 2(2):375-84. PubMed ID: 20356182 [TBL] [Abstract][Full Text] [Related]
3. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells. Kim JH; Yu JS Phys Chem Chem Phys; 2010 Dec; 12(46):15301-8. PubMed ID: 20938509 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell. Fang B; Kim JH; Kim M; Kim M; Yu JS Phys Chem Chem Phys; 2009 Mar; 11(9):1380-7. PubMed ID: 19224039 [TBL] [Abstract][Full Text] [Related]
5. Microstructure-based modeling of aging mechanisms in catalyst layers of polymer electrolyte fuel cells. Malek K; Franco AA J Phys Chem B; 2011 Jun; 115(25):8088-101. PubMed ID: 21648461 [TBL] [Abstract][Full Text] [Related]
6. Preparation and fuel cell performance of catalyst layers using sulfonated polyimide ionomers. Omata T; Tanaka M; Miyatake K; Uchida M; Uchida H; Watanabe M ACS Appl Mater Interfaces; 2012 Feb; 4(2):730-7. PubMed ID: 22201410 [TBL] [Abstract][Full Text] [Related]
7. Modulated ionomer distribution in the catalyst layer of polymer electrolyte membrane fuel cells for high temperature operation. Choo MJ; Oh KH; Kim HT; Park JK ChemSusChem; 2014 Aug; 7(8):2335-41. PubMed ID: 24777945 [TBL] [Abstract][Full Text] [Related]
8. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell. Duteanu N; Erable B; Senthil Kumar SM; Ghangrekar MM; Scott K Bioresour Technol; 2010 Jul; 101(14):5250-5. PubMed ID: 20171090 [TBL] [Abstract][Full Text] [Related]
9. Single wall carbon nanotube supports for portable direct methanol fuel cells. Girishkumar G; Hall TD; Vinodgopal K; Kamat PV J Phys Chem B; 2006 Jan; 110(1):107-14. PubMed ID: 16471506 [TBL] [Abstract][Full Text] [Related]
10. Transport and Electrochemical Interface Properties of Ionomers in Low-Pt Loading Catalyst Layers: Effect of Ionomer Equivalent Weight and Relative Humidity. Poojary S; Islam MN; Shrivastava UN; Roberts EPL; Karan K Molecules; 2020 Jul; 25(15):. PubMed ID: 32722653 [TBL] [Abstract][Full Text] [Related]
12. A highly stable anode, carbon-free, catalyst support based on tungsten trioxide nanoclusters for proton-exchange membrane fuel cells. Dou M; Hou M; Zhang H; Li G; Lu W; Wei Z; Shao Z; Yi B ChemSusChem; 2012 May; 5(5):945-51. PubMed ID: 22532479 [TBL] [Abstract][Full Text] [Related]
13. Full Parametric Study of the Influence of Ionomer Content, Catalyst Loading and Catalyst Type on Oxygen and Ion Transport in PEM Fuel Cell Catalyst Layers. Alink R; Singh R; Schneider P; Christmann K; Schall J; Keding R; Zamel N Molecules; 2020 Mar; 25(7):. PubMed ID: 32230750 [TBL] [Abstract][Full Text] [Related]
14. An ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis. Zhu X; Zhang H; Zhang Y; Liang Y; Wang X; Yi B J Phys Chem B; 2006 Jul; 110(29):14240-8. PubMed ID: 16854127 [TBL] [Abstract][Full Text] [Related]
15. Using mesoporous carbon electrodes for brackish water desalination. Zou L; Li L; Song H; Morris G Water Res; 2008 Apr; 42(8-9):2340-8. PubMed ID: 18222527 [TBL] [Abstract][Full Text] [Related]
16. Effect of water sorption on the electronic conductivity of porous polymer electrolyte membrane fuel cell catalyst layers. Morris DR; Liu SP; Villegas Gonzalez D; Gostick JT ACS Appl Mater Interfaces; 2014 Nov; 6(21):18609-18. PubMed ID: 25275957 [TBL] [Abstract][Full Text] [Related]
17. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy. Feindel KW; Bergens SH; Wasylishen RE Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498 [TBL] [Abstract][Full Text] [Related]
18. Impact of Membrane Types and Catalyst Layers Composition on Performance of Polymer Electrolyte Membrane Fuel Cells. Mohanta PK; Ripa MS; Regnet F; Jörissen L ChemistryOpen; 2020 May; 9(5):607-615. PubMed ID: 32440465 [TBL] [Abstract][Full Text] [Related]
19. Rheological Investigation on the Microstructure of Fuel Cell Catalyst Inks. Khandavalli S; Park JH; Kariuki NN; Myers DJ; Stickel JJ; Hurst K; Neyerlin KC; Ulsh M; Mauger SA ACS Appl Mater Interfaces; 2018 Dec; 10(50):43610-43622. PubMed ID: 30525374 [TBL] [Abstract][Full Text] [Related]
20. Chemically tuned anode with tailored aqueous hydrocarbon binder for direct methanol fuel cells. Lee CH; Lee SY; Lee YM; McGrath JE Langmuir; 2009 Jul; 25(14):8217-25. PubMed ID: 19485372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]