These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 21574812)
1. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Sabo-Attwood T; Unrine JM; Stone JW; Murphy CJ; Ghoshroy S; Blom D; Bertsch PM; Newman LA Nanotoxicology; 2012 Jun; 6(4):353-60. PubMed ID: 21574812 [TBL] [Abstract][Full Text] [Related]
2. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Judy JD; Unrine JM; Rao W; Wirick S; Bertsch PM Environ Sci Technol; 2012 Aug; 46(15):8467-74. PubMed ID: 22784043 [TBL] [Abstract][Full Text] [Related]
3. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. Oh E; Delehanty JB; Sapsford KE; Susumu K; Goswami R; Blanco-Canosa JB; Dawson PE; Granek J; Shoff M; Zhang Q; Goering PL; Huston A; Medintz IL ACS Nano; 2011 Aug; 5(8):6434-48. PubMed ID: 21774456 [TBL] [Abstract][Full Text] [Related]
4. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Coradeghini R; Gioria S; García CP; Nativo P; Franchini F; Gilliland D; Ponti J; Rossi F Toxicol Lett; 2013 Mar; 217(3):205-16. PubMed ID: 23246733 [TBL] [Abstract][Full Text] [Related]
5. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Zhu ZJ; Wang H; Yan B; Zheng H; Jiang Y; Miranda OR; Rotello VM; Xing B; Vachet RW Environ Sci Technol; 2012 Nov; 46(22):12391-8. PubMed ID: 23102049 [TBL] [Abstract][Full Text] [Related]
6. Comparative toxicity of nanoparticulate/bulk Yb₂O₃ and YbCl₃ to cucumber (Cucumis sativus). Zhang P; Ma Y; Zhang Z; He X; Guo Z; Tai R; Ding Y; Zhao Y; Chai Z Environ Sci Technol; 2012 Feb; 46(3):1834-41. PubMed ID: 22191482 [TBL] [Abstract][Full Text] [Related]
7. Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Mironava T; Hadjiargyrou M; Simon M; Jurukovski V; Rafailovich MH Nanotoxicology; 2010 Mar; 4(1):120-37. PubMed ID: 20795906 [TBL] [Abstract][Full Text] [Related]
8. Comparative uptake and impact of TiO₂ nanoparticles in wheat and rapeseed. Larue C; Veronesi G; Flank AM; Surble S; Herlin-Boime N; Carrière M J Toxicol Environ Health A; 2012; 75(13-15):722-34. PubMed ID: 22788360 [TBL] [Abstract][Full Text] [Related]
9. Effect of surface coating on the biodistribution profile of gold nanoparticles in the rat. Morais T; Soares ME; Duarte JA; Soares L; Maia S; Gomes P; Pereira E; Fraga S; Carmo H; Bastos Mde L Eur J Pharm Biopharm; 2012 Jan; 80(1):185-93. PubMed ID: 21946301 [TBL] [Abstract][Full Text] [Related]
10. Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Glenn JB; White SA; Klaine SJ Environ Toxicol Chem; 2012 Jan; 31(1):194-201. PubMed ID: 22038861 [TBL] [Abstract][Full Text] [Related]
11. Silver and gold nanoparticles in plants: sites for the reduction to metal. Beattie IR; Haverkamp RG Metallomics; 2011 Jun; 3(6):628-32. PubMed ID: 21611658 [TBL] [Abstract][Full Text] [Related]
12. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Judy JD; Unrine JM; Bertsch PM Environ Sci Technol; 2011 Jan; 45(2):776-81. PubMed ID: 21128683 [TBL] [Abstract][Full Text] [Related]
13. Mixed-charge nanoparticles for long circulation, low reticuloendothelial system clearance, and high tumor accumulation. Liu X; Li H; Chen Y; Jin Q; Ren K; Ji J Adv Healthc Mater; 2014 Sep; 3(9):1439-47. PubMed ID: 24550205 [TBL] [Abstract][Full Text] [Related]
14. Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time. Geffroy B; Ladhar C; Cambier S; Treguer-Delapierre M; Brèthes D; Bourdineaud JP Nanotoxicology; 2012 Mar; 6(2):144-60. PubMed ID: 21417799 [TBL] [Abstract][Full Text] [Related]
15. Size- and coating-dependent uptake of polymer-coated gold nanoparticles in primary human dermal microvascular endothelial cells. Freese C; Gibson MI; Klok HA; Unger RE; Kirkpatrick CJ Biomacromolecules; 2012 May; 13(5):1533-43. PubMed ID: 22512620 [TBL] [Abstract][Full Text] [Related]
16. Shape dependence of gold nanoparticles on in vivo acute toxicological effects and biodistribution. Sun YN; Wang CD; Zhang XM; Ren L; Tian XH J Nanosci Nanotechnol; 2011 Feb; 11(2):1210-6. PubMed ID: 21456161 [TBL] [Abstract][Full Text] [Related]
17. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Liu X; Huang N; Li H; Jin Q; Ji J Langmuir; 2013 Jul; 29(29):9138-48. PubMed ID: 23815604 [TBL] [Abstract][Full Text] [Related]
18. Uptake and distribution of ceria nanoparticles in cucumber plants. Zhang Z; He X; Zhang H; Ma Y; Zhang P; Ding Y; Zhao Y Metallomics; 2011 Aug; 3(8):816-22. PubMed ID: 21731965 [TBL] [Abstract][Full Text] [Related]
19. Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. Avellan A; Yun J; Zhang Y; Spielman-Sun E; Unrine JM; Thieme J; Li J; Lombi E; Bland G; Lowry GV ACS Nano; 2019 May; 13(5):5291-5305. PubMed ID: 31074967 [TBL] [Abstract][Full Text] [Related]
20. Biodistribution of single and aggregated gold nanoparticles exposed to the human lung epithelial tissue barrier at the air-liquid interface. Durantie E; Vanhecke D; Rodriguez-Lorenzo L; Delhaes F; Balog S; Septiadi D; Bourquin J; Petri-Fink A; Rothen-Rutishauser B Part Fibre Toxicol; 2017 Nov; 14(1):49. PubMed ID: 29187209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]