BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21575114)

  • 21. Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae.
    Grossmann G; Opekarova M; Novakova L; Stolz J; Tanner W
    Eukaryot Cell; 2006 Jun; 5(6):945-53. PubMed ID: 16757742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Association of yeast transporters with detergent-resistant membranes correlates with their cell-surface location.
    Lauwers E; André B
    Traffic; 2006 Aug; 7(8):1045-59. PubMed ID: 16734661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review).
    Holthuis JC; van Meer G; Huitema K
    Mol Membr Biol; 2003; 20(3):231-41. PubMed ID: 12893531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane trafficking in the yeast Saccharomyces cerevisiae model.
    Feyder S; De Craene JO; Bär S; Bertazzi DL; Friant S
    Int J Mol Sci; 2015 Jan; 16(1):1509-25. PubMed ID: 25584613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concentration of GPI-anchored proteins upon ER exit in yeast.
    Castillon GA; Watanabe R; Taylor M; Schwabe TM; Riezman H
    Traffic; 2009 Feb; 10(2):186-200. PubMed ID: 19054390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast.
    Curwin AJ; von Blume J; Malhotra V
    Mol Biol Cell; 2012 Jun; 23(12):2327-38. PubMed ID: 22553351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualization of protein compartmentation within the plasma membrane of living yeast cells.
    Malínská K; Malínský J; Opekarová M; Tanner W
    Mol Biol Cell; 2003 Nov; 14(11):4427-36. PubMed ID: 14551254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sphingolipid topology and the dynamic organization and function of membrane proteins.
    van Meer G; Hoetzl S
    FEBS Lett; 2010 May; 584(9):1800-5. PubMed ID: 19837070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rescue of cell growth by sphingosine with disruption of lipid microdomain formation in Saccharomyces cerevisiae deficient in sphingolipid biosynthesis.
    Tani M; Kihara A; Igarashi Y
    Biochem J; 2006 Feb; 394(Pt 1):237-42. PubMed ID: 16225461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Erv14p directs a transmembrane secretory protein into COPII-coated transport vesicles.
    Powers J; Barlowe C
    Mol Biol Cell; 2002 Mar; 13(3):880-91. PubMed ID: 11907269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Basic mechanisms of secretion: sorting into the regulated secretory pathway.
    Blázquez M; Shennan KI
    Biochem Cell Biol; 2000; 78(3):181-91. PubMed ID: 10949073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple lipid transport pathways to the plasma membrane in yeast.
    Schnabl M; Daum G; Pichler H
    Biochim Biophys Acta; 2005 Feb; 1687(1-3):130-40. PubMed ID: 15708361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells.
    Malinska K; Malinsky J; Opekarova M; Tanner W
    J Cell Sci; 2004 Dec; 117(Pt 25):6031-41. PubMed ID: 15536122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SEC18/NSF-independent, protein-sorting pathway from the yeast cortical ER to the plasma membrane.
    Jüschke C; Wächter A; Schwappach B; Seedorf M
    J Cell Biol; 2005 May; 169(4):613-22. PubMed ID: 15911878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast.
    Bagnat M; Keränen S; Shevchenko A; Shevchenko A; Simons K
    Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3254-9. PubMed ID: 10716729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling Yeast Organelle Membranes and How Lipid Diversity Influences Bilayer Properties.
    Monje-Galvan V; Klauda JB
    Biochemistry; 2015 Nov; 54(45):6852-61. PubMed ID: 26497753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The lateral compartmentation of the yeast plasma membrane.
    Malinsky J; Opekarová M; Tanner W
    Yeast; 2010 Aug; 27(8):473-8. PubMed ID: 20641012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytotoxicity of an anti-cancer lysophospholipid through selective modification of lipid raft composition.
    Zaremberg V; Gajate C; Cacharro LM; Mollinedo F; McMaster CR
    J Biol Chem; 2005 Nov; 280(45):38047-58. PubMed ID: 16155007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast.
    Cuesta-Marbán Á; Botet J; Czyz O; Cacharro LM; Gajate C; Hornillos V; Delgado J; Zhang H; Amat-Guerri F; Acuña AU; McMaster CR; Revuelta JL; Zaremberg V; Mollinedo F
    J Biol Chem; 2013 Mar; 288(12):8405-8418. PubMed ID: 23335509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gel domains in the plasma membrane of Saccharomyces cerevisiae: highly ordered, ergosterol-free, and sphingolipid-enriched lipid rafts.
    Aresta-Branco F; Cordeiro AM; Marinho HS; Cyrne L; Antunes F; de Almeida RF
    J Biol Chem; 2011 Feb; 286(7):5043-54. PubMed ID: 21127065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.