BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21575565)

  • 21. Yeast lifespan variation correlates with cell growth and SIR2 expression.
    Smith JT; White JW; Dungrawala H; Hua H; Schneider BL
    PLoS One; 2018; 13(7):e0200275. PubMed ID: 29979754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat stress-induced Cup9-dependent transcriptional regulation of SIR2.
    Laskar S; K S; Bhattacharyya MK; Nair AS; Dhar P; Bhattacharyya S
    Mol Cell Biol; 2015 Jan; 35(2):437-50. PubMed ID: 25384977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast.
    Rodriguez ME; Orozco H; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2014 Sep; 14(6):845-57. PubMed ID: 24920206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate.
    Ehrentraut S; Weber JM; Dybowski JN; Hoffmann D; Ehrenhofer-Murray AE
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5522-7. PubMed ID: 20133733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress.
    Simoneau A; Ricard É; Weber S; Hammond-Martel I; Wong LH; Sellam A; Giaever G; Nislow C; Raymond M; Wurtele H
    Nucleic Acids Res; 2016 Apr; 44(6):2706-26. PubMed ID: 26748095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recruitment and allosteric stimulation of a histone-deubiquitinating enzyme during heterochromatin assembly.
    Zukowski A; Al-Afaleq NO; Duncan ED; Yao T; Johnson AM
    J Biol Chem; 2018 Feb; 293(7):2498-2509. PubMed ID: 29288197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage.
    Hickman MA; Froyd CA; Rusche LN
    Eukaryot Cell; 2011 Sep; 10(9):1183-92. PubMed ID: 21764908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycerol 3-phosphate dehydrogenase regulates heat shock response in Saccharomyces cerevisiae.
    Pallapati AR; Prasad S; Roy I
    Biochim Biophys Acta Mol Cell Res; 2022 May; 1869(5):119238. PubMed ID: 35150808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell size control is sirtuin(ly) exciting.
    Wright J; Schneider BL
    Mol Syst Biol; 2013 Nov; 9():706. PubMed ID: 24217297
    [No Abstract]   [Full Text] [Related]  

  • 30. Sir2 links the unfolded protein response and the heat shock response in a stress response network.
    Weindling E; Bar-Nun S
    Biochem Biophys Res Commun; 2015 Feb; 457(3):473-8. PubMed ID: 25600811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SIR2 suppresses replication gaps and genome instability by balancing replication between repetitive and unique sequences.
    Foss EJ; Lao U; Dalrymple E; Adrianse RL; Loe T; Bedalov A
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):552-557. PubMed ID: 28049846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation.
    Thurtle-Schmidt DM; Dodson AE; Rine J
    Genetics; 2016 Sep; 204(1):177-90. PubMed ID: 27489001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sir protein-independent repair of dicentric chromosomes in Saccharomyces cerevisiae.
    McCleary DF; Steakley DL; Rine J
    Mol Biol Cell; 2016 Sep; 27(18):2879-83. PubMed ID: 27466318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1.
    Yao Y; Tsuchiyama S; Yang C; Bulteau AL; He C; Robison B; Tsuchiya M; Miller D; Briones V; Tar K; Potrero A; Friguet B; Kennedy BK; Schmidt M
    PLoS Genet; 2015 Jan; 11(1):e1004968. PubMed ID: 25629410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA-sequencing exploration on SIR2 and SOD genes in Polyalthia longifolia leaf methanolic extracts (PLME) mediated anti-aging effects in Saccharomyces cerevisiae BY611 yeast cells.
    Hemagirri M; Chen Y; Gopinath SCB; Adnan M; Patel M; Sasidharan S
    Biogerontology; 2024 Aug; 25(4):705-737. PubMed ID: 38619670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sir2 mitigates an intrinsic imbalance in origin licensing efficiency between early- and late-replicating euchromatin.
    Hoggard T; Müller CA; Nieduszynski CA; Weinreich M; Fox CA
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14314-14321. PubMed ID: 32513739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depletion of Limiting rDNA Structural Complexes Triggers Chromosomal Instability and Replicative Aging of
    Fine RD; Maqani N; Li M; Franck E; Smith JS
    Genetics; 2019 May; 212(1):75-91. PubMed ID: 30842210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2.
    Bheda P; Swatkoski S; Fiedler KL; Boeke JD; Cotter RJ; Wolberger C
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):E916-25. PubMed ID: 22474337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding.
    Hsu HC; Wang CL; Wang M; Yang N; Chen Z; Sternglanz R; Xu RM
    Genes Dev; 2013 Jan; 27(1):64-73. PubMed ID: 23307867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA.
    Fritze CE; Verschueren K; Strich R; Easton Esposito R
    EMBO J; 1997 Nov; 16(21):6495-509. PubMed ID: 9351831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.