BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21575569)

  • 1. In situ calibration of nucleoplasmic versus cytoplasmic Ca²+ concentration in adult cardiomyocytes.
    Ljubojević S; Walther S; Asgarzoei M; Sedej S; Pieske B; Kockskämper J
    Biophys J; 2011 May; 100(10):2356-66. PubMed ID: 21575569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IP3-dependent nuclear Ca2+ signalling in the mammalian heart.
    Zima AV; Bare DJ; Mignery GA; Blatter LA
    J Physiol; 2007 Oct; 584(Pt 2):601-11. PubMed ID: 17761776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholamban regulates nuclear Ca
    Chen M; Xu D; Wu AZ; Kranias E; Lin SF; Chen PS; Chen Z
    J Mol Cell Cardiol; 2018 Oct; 123():185-197. PubMed ID: 30261161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleoplasmic and cytoplasmic differences in the fluorescence properties of the calcium indicator Fluo-3.
    Perez-Terzic C; Stehno-Bittel L; Clapham DE
    Cell Calcium; 1997 Apr; 21(4):275-82. PubMed ID: 9160163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus-dependent regulation of nuclear Ca2+ signaling in cardiomyocytes: a role of neuronal calcium sensor-1.
    Nakao S; Wakabayashi S; Nakamura TY
    PLoS One; 2015; 10(4):e0125050. PubMed ID: 25897502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells.
    Subedi KP; Paudel O; Sham JS
    Am J Physiol Cell Physiol; 2014 Apr; 306(7):C659-69. PubMed ID: 24352334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early remodeling of perinuclear Ca2+ stores and nucleoplasmic Ca2+ signaling during the development of hypertrophy and heart failure.
    Ljubojevic S; Radulovic S; Leitinger G; Sedej S; Sacherer M; Holzer M; Winkler C; Pritz E; Mittler T; Schmidt A; Sereinigg M; Wakula P; Zissimopoulos S; Bisping E; Post H; Marsche G; Bossuyt J; Bers DM; Kockskämper J; Pieske B
    Circulation; 2014 Jul; 130(3):244-55. PubMed ID: 24928680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the dissociation constant of Fluo-3 for Ca2+ in isolated rabbit cardiomyocytes using Ca2+ wave characteristics.
    Loughrey CM; MacEachern KE; Cooper J; Smith GL
    Cell Calcium; 2003 Jul; 34(1):1-9. PubMed ID: 12767887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic methods for monitoring intracellular Ca2+ in cardiac myocytes using Fluo-3.
    Bito V; Sipido KR; Macquaide N
    Cold Spring Harb Protoc; 2015 Apr; 2015(4):392-7. PubMed ID: 25834257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental aspects of cardiac Ca(2+) signaling: interplay between RyR- and IP(3)R-gated Ca(2+) stores.
    Janowski E; Berríos M; Cleemann L; Morad M
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1939-50. PubMed ID: 20304819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced nucleoplasmic Ca
    Plačkić J; Preissl S; Nikonova Y; Pluteanu F; Hein L; Kockskämper J
    J Mol Cell Cardiol; 2016 Dec; 101():58-68. PubMed ID: 27816525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inositol-1,4,5-trisphosphate-mediated spontaneous activity in mouse embryonic stem cell-derived cardiomyocytes.
    Kapur N; Banach K
    J Physiol; 2007 Jun; 581(Pt 3):1113-27. PubMed ID: 17379641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epac enhances excitation-transcription coupling in cardiac myocytes.
    Pereira L; Ruiz-Hurtado G; Morel E; Laurent AC; Métrich M; Domínguez-Rodríguez A; Lauton-Santos S; Lucas A; Benitah JP; Bers DM; Lezoualc'h F; Gómez AM
    J Mol Cell Cardiol; 2012 Jan; 52(1):283-91. PubMed ID: 22056318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels.
    Peppiatt CM; Collins TJ; Mackenzie L; Conway SJ; Holmes AB; Bootman MD; Berridge MJ; Seo JT; Roderick HL
    Cell Calcium; 2003 Jul; 34(1):97-108. PubMed ID: 12767897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. R-CEPIA1er as a new tool to directly measure sarcoplasmic reticulum [Ca] in ventricular myocytes.
    Bovo E; Martin JL; Tyryfter J; de Tombe PP; Zima AV
    Am J Physiol Heart Circ Physiol; 2016 Jul; 311(1):H268-75. PubMed ID: 27233762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear Ca2+ regulates cardiomyocyte function.
    Guatimosim S; Amaya MJ; Guerra MT; Aguiar CJ; Goes AM; Gómez-Viquez NL; Rodrigues MA; Gomes DA; Martins-Cruz J; Lederer WJ; Leite MF
    Cell Calcium; 2008 Aug; 44(2):230-42. PubMed ID: 18201761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca(2+) signaling of airway smooth muscle cells.
    Bai Y; Edelmann M; Sanderson MJ
    Am J Physiol Lung Cell Mol Physiol; 2009 Aug; 297(2):L347-61. PubMed ID: 19465516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative assessment of fluo Ca2+ indicators in rat ventricular myocytes.
    Hagen BM; Boyman L; Kao JP; Lederer WJ
    Cell Calcium; 2012 Aug; 52(2):170-81. PubMed ID: 22721780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium is acutely toxic for murine hepatocytes: effects on intracellular free Ca(2+) homeostasis.
    Wang SS; Chen L; Xia SK
    Physiol Res; 2007; 56(2):193-201. PubMed ID: 16555952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-mobility group box 1 (HMGB1) impaired cardiac excitation-contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca(2+) leak through TLR4-ROS signaling in cardiomyocytes.
    Zhang C; Mo M; Ding W; Liu W; Yan D; Deng J; Luo X; Liu J
    J Mol Cell Cardiol; 2014 Sep; 74():260-73. PubMed ID: 24937603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.