These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21575584)

  • 1. Validation of fractal-like kinetic models by time-resolved binding kinetics of dansylamide and carbonic anhydrase in crowded media.
    Neff KL; Offord CP; Caride AJ; Strehler EE; Prendergast FG; Bajzer Z
    Biophys J; 2011 May; 100(10):2495-503. PubMed ID: 21575584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for the origin of differential spectral and binding profiles of dansylamide with human carbonic anhydrase I and II.
    Banerjee AL; Tobwala S; Ganguly B; Mallik S; Srivastava DK
    Biochemistry; 2005 Mar; 44(10):3673-82. PubMed ID: 15751944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-solution interaction assay of carbonic anhydrase to its inhibitors using back-scattering interferometry.
    Morcos EF; Kussrow A; Enders C; Bornhop D
    Electrophoresis; 2010 Nov; 31(22):3691-5. PubMed ID: 20972990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractal-like kinetics of intracellular enzymatic reactions: a chemical framework of endotoxin tolerance and a possible non-specific contribution of macromolecular crowding to cross-tolerance.
    Vasilescu C; Olteanu M; Flondor P; Calin GA
    Theor Biol Med Model; 2013 Sep; 10():55. PubMed ID: 24034421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding decelerates aggregation of a β-rich protein, bovine carbonic anhydrase: a case study.
    Mittal S; Singh LR
    J Biochem; 2014 Nov; 156(5):273-82. PubMed ID: 24917682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of inhibitor affinity to variants of human carbonic anhydrase II.
    Nair SK; Krebs JF; Christianson DW; Fierke CA
    Biochemistry; 1995 Mar; 34(12):3981-9. PubMed ID: 7696263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws.
    Schnell S; Turner TE
    Prog Biophys Mol Biol; 2004; 85(2-3):235-60. PubMed ID: 15142746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of dithiothreitol on the catalytic activity, quaternary structure and sulfonamide-binding properties of an extracellular carbonic anhydrase from Chlamydomonas reinhardtii.
    Husic HD; Hsieh S; Berrier AL
    Biochim Biophys Acta; 1991 May; 1078(1):35-42. PubMed ID: 1904772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unexpected binding mode of the sulfonamide fluorophore 5-dimethylamino-1-naphthalene sulfonamide to human carbonic anhydrase II. Implications for the development of a zinc biosensor.
    Nair SK; Elbaum D; Christianson DW
    J Biol Chem; 1996 Jan; 271(2):1003-7. PubMed ID: 8557623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifractality in intracellular enzymatic reactions.
    Aranda JS; Salgado E; Muñoz-Diosdado A
    J Theor Biol; 2006 May; 240(2):209-17. PubMed ID: 16256143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulations of enzymatic reactions in crowded media. Effect of the enzyme-obstacle relative size.
    Pitulice L; Vilaseca E; Pastor I; Madurga S; Garcés JL; Isvoran A; Mas F
    Math Biosci; 2014 May; 251():72-82. PubMed ID: 24680707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential modulation of the active site environment of human carbonic anhydrase XII by cationic quantum dots and polylysine.
    Manokaran S; Zhang X; Chen W; Srivastava DK
    Biochim Biophys Acta; 2010 Jun; 1804(6):1376-84. PubMed ID: 20215053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of the conserved active-site residues Tyr7, Glu106 and Thr199 for the catalytic function of human carbonic anhydrase II.
    Liang Z; Xue Y; Behravan G; Jonsson BH; Lindskog S
    Eur J Biochem; 1993 Feb; 211(3):821-7. PubMed ID: 8436138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cosolvent assisted protein refolding.
    Cleland JL; Wang DI
    Biotechnology (N Y); 1990 Dec; 8(12):1274-8. PubMed ID: 1367488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular crowding effects of linear polymers in protein solutions.
    Winzor DJ; Wills PR
    Biophys Chem; 2006 Jan; 119(2):186-95. PubMed ID: 16129549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of catalytic activity and stability of carbonic anhydrase II as revealed by random mutagenesis.
    Krebs JF; Fierke CA
    J Biol Chem; 1993 Jan; 268(2):948-54. PubMed ID: 8419374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of macromolecular crowding on the folding and aggregation of glycosylated MUC5AC.
    Jing W; Qin Y; Tong J
    Biochem Biophys Res Commun; 2020 Sep; 529(4):984-990. PubMed ID: 32819609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of anionic and neutral forms of a fluorophoric ligand at the active site of human carbonic anhydrase I.
    Manokaran S; Banerjee J; Mallik S; Srivastava DK
    Biochim Biophys Acta; 2010 Oct; 1804(10):1965-73. PubMed ID: 20620244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent hydrogen isotope effects and anion inhibition of CO2 hydration catalysed by carbonic anhydrase from Pisum sativum.
    Johansson IM; Forsman C
    Eur J Biochem; 1994 Sep; 224(3):901-7. PubMed ID: 7925414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.