BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21575593)

  • 1. Volume regulation of murine T lymphocytes relies on voltage-dependent and two-pore domain potassium channels.
    Bobak N; Bittner S; Andronic J; Hartmann S; Mühlpfordt F; Schneider-Hohendorf T; Wolf K; Schmelter C; Göbel K; Meuth P; Zimmermann H; Döring F; Wischmeyer E; Budde T; Wiendl H; Meuth SG; Sukhorukov VL
    Biochim Biophys Acta; 2011 Aug; 1808(8):2036-44. PubMed ID: 21575593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of two-pore domain potassium channels as potent modulators of osmotic volume regulation in human T lymphocytes.
    Andronic J; Bobak N; Bittner S; Ehling P; Kleinschnitz C; Herrmann AM; Zimmermann H; Sauer M; Wiendl H; Budde T; Meuth SG; Sukhorukov VL
    Biochim Biophys Acta; 2013 Feb; 1828(2):699-707. PubMed ID: 23041580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of putative K+ channel blockers on volume regulation of murine spermatozoa.
    Barfield JP; Yeung CH; Cooper TG
    Biol Reprod; 2005 May; 72(5):1275-81. PubMed ID: 15673604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules.
    Barriere H; Belfodil R; Rubera I; Tauc M; Lesage F; Poujeol C; Guy N; Barhanin J; Poujeol P
    J Gen Physiol; 2003 Aug; 122(2):177-90. PubMed ID: 12860925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upregulation of K2P5.1 potassium channels in multiple sclerosis.
    Bittner S; Bobak N; Herrmann AM; Göbel K; Meuth P; Höhn KG; Stenner MP; Budde T; Wiendl H; Meuth SG
    Ann Neurol; 2010 Jul; 68(1):58-69. PubMed ID: 20582984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TRESK background potassium channel is not gated at the helix bundle crossing near the cytoplasmic end of the pore.
    Lengyel M; Czirják G; Enyedi P
    PLoS One; 2018; 13(5):e0197622. PubMed ID: 29763475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Volume Activated Potassium Channel KCNK5 is Up-Regulated in Activated Human T Cells, but Volume Regulation is Impaired.
    Kirkegaard SS; Strøm PD; Gammeltoft S; Hansen AJ; Hoffmann EK
    Cell Physiol Biochem; 2016; 38(3):883-92. PubMed ID: 26909737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Murine K2P5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K2P3.1- and KV1.3-Dependent Mechanisms.
    Bittner S; Bobak N; Hofmann MS; Schuhmann MK; Ruck T; Göbel K; Brück W; Wiendl H; Meuth SG
    Int J Mol Sci; 2015 Jul; 16(8):16880-96. PubMed ID: 26213925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ion channel mechanism of regulatory volume decrease in human epithelial cells].
    Shi LP; Zang YM; Hou XL; Wang J
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2008 Aug; 24(3):356-60. PubMed ID: 21141603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The TASK1 channel inhibitor A293 shows efficacy in a mouse model of multiple sclerosis.
    Bittner S; Bauer MA; Ehling P; Bobak N; Breuer J; Herrmann AM; Golfels M; Wiendl H; Budde T; Meuth SG
    Exp Neurol; 2012 Dec; 238(2):149-55. PubMed ID: 22960185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation.
    Kirkegaard SS; Lambert IH; Gammeltoft S; Hoffmann EK
    Am J Physiol Cell Physiol; 2010 Oct; 299(4):C844-53. PubMed ID: 20631251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 critically influence T lymphocyte effector functions.
    Meuth SG; Bittner S; Meuth P; Simon OJ; Budde T; Wiendl H
    J Biol Chem; 2008 May; 283(21):14559-70. PubMed ID: 18375952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular fluoride influences TASK mediated currents in human T cells.
    Herrmann AM; Cerina M; Bittner S; Meuth SG; Budde T
    J Immunol Methods; 2020 Dec; 487():112875. PubMed ID: 33031794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What do we not know about mitochondrial potassium channels?
    Laskowski M; Augustynek B; Kulawiak B; Koprowski P; Bednarczyk P; Jarmuszkiewicz W; Szewczyk A
    Biochim Biophys Acta; 2016 Aug; 1857(8):1247-1257. PubMed ID: 26951942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K(+) efflux through two-pore domain K(+) channels is required for mouse embryonic development.
    Hur CG; Kim EJ; Cho SK; Cho YW; Yoon SY; Tak HM; Kim CW; Choe C; Han J; Kang D
    Reproduction; 2012 May; 143(5):625-36. PubMed ID: 22419831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of potassium channels involved in volume regulation of human spermatozoa.
    Barfield JP; Yeung CH; Cooper TG
    Mol Hum Reprod; 2005 Dec; 11(12):891-7. PubMed ID: 16421215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on "Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse".
    Bittner S; Wiendl H; Meuth SG
    Immunol Lett; 2009 Aug; 125(2):156-7. PubMed ID: 19595706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+ conductance activated during regulatory volume decrease. The channels in Ehrlich cells and their possible molecular counterpart.
    Niemeyer MI; Cid LP; Sepúlveda FV
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Oct; 130(3):565-75. PubMed ID: 11913467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the IsK (MinK) potassium channel subunit to regulatory volume decrease in murine tracheal epithelial cells.
    Lock H; Valverde MA
    J Biol Chem; 2000 Nov; 275(45):34849-52. PubMed ID: 10995738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium channels as therapeutic targets for autoimmune disorders.
    Wulff H; Beeton C; Chandy KG
    Curr Opin Drug Discov Devel; 2003 Sep; 6(5):640-7. PubMed ID: 14579513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.