BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21575597)

  • 1. Observations on novel splice junctions from RNA sequencing data.
    Wang L; Wang X; Wang X; Liang Y; Zhang X
    Biochem Biophys Res Commun; 2011 Jun; 409(2):299-303. PubMed ID: 21575597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing.
    Pan Q; Shai O; Lee LJ; Frey BJ; Blencowe BJ
    Nat Genet; 2008 Dec; 40(12):1413-5. PubMed ID: 18978789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep RNA sequencing reveals a high frequency of alternative splicing events in the fungus Trichoderma longibrachiatum.
    Xie BB; Li D; Shi WL; Qin QL; Wang XW; Rong JC; Sun CY; Huang F; Zhang XY; Dong XW; Chen XL; Zhou BC; Zhang YZ; Song XY
    BMC Genomics; 2015 Feb; 16(1):54. PubMed ID: 25652134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS.
    Park JW; Tokheim C; Shen S; Xing Y
    Methods Mol Biol; 2013; 1038():171-9. PubMed ID: 23872975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ASGAL: aligning RNA-Seq data to a splicing graph to detect novel alternative splicing events.
    Denti L; Rizzi R; Beretta S; Vedova GD; Previtali M; Bonizzoni P
    BMC Bioinformatics; 2018 Nov; 19(1):444. PubMed ID: 30458725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection, annotation and visualization of alternative splicing from RNA-Seq data with SplicingViewer.
    Liu Q; Chen C; Shen E; Zhao F; Sun Z; Wu J
    Genomics; 2012 Mar; 99(3):178-82. PubMed ID: 22226708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global and unbiased detection of splice junctions from RNA-seq data.
    Ameur A; Wetterbom A; Feuk L; Gyllensten U
    Genome Biol; 2010; 11(3):R34. PubMed ID: 20236510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNPlice: variants that modulate Intron retention from RNA-sequencing data.
    Mudvari P; Movassagh M; Kowsari K; Seyfi A; Kokkinaki M; Edwards NJ; Golestaneh N; Horvath A
    Bioinformatics; 2015 Apr; 31(8):1191-8. PubMed ID: 25481010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human splicing diversity and the extent of unannotated splice junctions across human RNA-seq samples on the Sequence Read Archive.
    Nellore A; Jaffe AE; Fortin JP; Alquicira-Hernández J; Collado-Torres L; Wang S; Phillips RA; Karbhari N; Hansen KD; Langmead B; Leek JT
    Genome Biol; 2016 Dec; 17(1):266. PubMed ID: 28038678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data.
    Zhang Y; Lameijer EW; 't Hoen PA; Ning Z; Slagboom PE; Ye K
    Bioinformatics; 2012 Feb; 28(4):479-86. PubMed ID: 22219203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunities and methods for studying alternative splicing in cancer with RNA-Seq.
    Feng H; Qin Z; Zhang X
    Cancer Lett; 2013 Nov; 340(2):179-91. PubMed ID: 23196057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA sequencing and quantitation using the Helicos Genetic Analysis System.
    Raz T; Causey M; Jones DR; Kieu A; Letovsky S; Lipson D; Thayer E; Thompson JF; Milos PM
    Methods Mol Biol; 2011; 733():37-49. PubMed ID: 21431761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and quantification of alternative splicing variants using RNA-seq.
    Bryant DW; Priest HD; Mockler TC
    Methods Mol Biol; 2012; 883():97-110. PubMed ID: 22589127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach.
    Bainbridge MN; Warren RL; Hirst M; Romanuik T; Zeng T; Go A; Delaney A; Griffith M; Hickenbotham M; Magrini V; Mardis ER; Sadar MD; Siddiqui AS; Marra MA; Jones SJ
    BMC Genomics; 2006 Sep; 7():246. PubMed ID: 17010196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A procedure for identifying homologous alternative splicing events.
    Talavera D; Hospital A; Orozco M; de la Cruz X
    BMC Bioinformatics; 2007 Jul; 8():260. PubMed ID: 17640387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PASTA: splice junction identification from RNA-sequencing data.
    Tang S; Riva A
    BMC Bioinformatics; 2013 Apr; 14():116. PubMed ID: 23557086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of alternative splicing events in ten different grapevine cultivars.
    Potenza E; Racchi ML; Sterck L; Coller E; Asquini E; Tosatto SC; Velasco R; Van de Peer Y; Cestaro A
    BMC Genomics; 2015 Sep; 16(1):706. PubMed ID: 26380971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of splice junctions from paired-end RNA-seq data by SpliceMap.
    Au KF; Jiang H; Lin L; Xing Y; Wong WH
    Nucleic Acids Res; 2010 Aug; 38(14):4570-8. PubMed ID: 20371516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discover hidden splicing variations by mapping personal transcriptomes to personal genomes.
    Stein S; Lu ZX; Bahrami-Samani E; Park JW; Xing Y
    Nucleic Acids Res; 2015 Dec; 43(22):10612-22. PubMed ID: 26578562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.