These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

31 related articles for article (PubMed ID: 215760)

  • 1. Proceedings: Possible involvement of cyclic GMP in the responses of rat kidney cortex slices to angiotensin.
    Evans JW; Munday KA; Parsons BJ
    J Endocrinol; 1976 Mar; 68(3):9P. PubMed ID: 176308
    [No Abstract]   [Full Text] [Related]  

  • 2. Angiotensin II and alpha-adrenergic control of the intrarenal circulation in hemorrhage.
    Hock CE; Passmore JC; Levin JI; Neiberger RE
    Circ Shock; 1982; 9(1):81-94. PubMed ID: 6279332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationships between receptor binding capacity for norepinephrine, angiotensin II, and vasopressin and release of inositol trisphosphate, Ca2+ mobilization, and phosphorylase activation in rat liver.
    Lynch CJ; Blackmore PF; Charest R; Exton JH
    Mol Pharmacol; 1985 Aug; 28(2):93-9. PubMed ID: 2991741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noradrenergic modulation of albumin expression in growth-stimulated adult rat hepatocytes in primary culture.
    Fabregat I; de Juan C; Roncero C; Benito M
    J Cell Physiol; 1994 Mar; 158(3):513-7. PubMed ID: 8126074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible role of noradrenaline in the stimulation of intestinal fluid transport following angiotensin infusions [proceedings].
    Levens NR; Munday KA; Parsons BJ; Stewart CP
    J Physiol; 1977 Oct; 272(1):57P-58P. PubMed ID: 592154
    [No Abstract]   [Full Text] [Related]  

  • 6. Characterization of alpha-1 adrenergic receptors linked to [3H]inositol metabolism in rat cerebral cortex.
    Minneman KP; Johnson RD
    J Pharmacol Exp Ther; 1984 Aug; 230(2):317-23. PubMed ID: 6146710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha 2-adrenergic receptors of the alpha 2c subtype mediate inhibition of norepinephrine release in human kidney cortex.
    Trendelenburg AU; Limberger N; Rump LC
    Mol Pharmacol; 1994 Jun; 45(6):1168-76. PubMed ID: 7912816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro vascular reactivity of the rat utero-feto-placental unit.
    Langer B; Barthelmebs M; Grima M; Coquard C; Imbs JL
    Obstet Gynecol; 1993 Sep; 82(3):380-6. PubMed ID: 8395037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between alpha 2-adrenergic receptor binding sites and the functional receptors inhibiting norepinephrine release in rat cerebral cortex.
    Nasseri A; Minneman KP
    Mol Pharmacol; 1987 Nov; 32(5):655-62. PubMed ID: 2891027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Desensitization of the alpha 1-adrenergic reaction under the action of noradrenaline in increasing concentrations].
    Berdysheva LV; Khakimova DKh; Manukhin BN
    Fiziol Zh SSSR Im I M Sechenova; 1990 Nov; 76(11):1538-43. PubMed ID: 1964423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific features and roles of renal circulation: angiotensin II revisited.
    Sadowski J; BadzyƄska B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 11():169-78. PubMed ID: 17244948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of alpha-1 adrenergic receptor density and functional responsiveness in rat brain.
    Johnson RD; Iuvone PM; Minneman KP
    J Pharmacol Exp Ther; 1987 Sep; 242(3):842-9. PubMed ID: 2821227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of renin by human kidney slices, in vitro effect of angiotensin II, norepinephrine and aldosterone.
    Rosset E; Veyrat R
    Rev Eur Etud Clin Biol; 1971 Oct; 16(8):792-4. PubMed ID: 4331508
    [No Abstract]   [Full Text] [Related]  

  • 14. Through the looking glass: differential noradenergic modulation of prefrontal cortical function.
    Arnsten AF
    Neural Plast; 2000; 7(1-2):133-46. PubMed ID: 10709220
    [No Abstract]   [Full Text] [Related]  

  • 15. The binding of [125I]-angiotensin to rat renal epithelial cell membranes.
    Cox HM; Munday KA; Poat JA
    Br J Pharmacol; 1983 May; 79(1):63-70. PubMed ID: 6307453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The subtype of alpha-adrenoceptor involved in the neural control of renal tubular sodium reabsorption in the rabbit.
    Hesse IF; Johns EJ
    J Physiol; 1984 Jul; 352():527-38. PubMed ID: 6086915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the renin-angiotensin system and the renal nerves in the regulation of rat kidney function.
    Handa RK; Johns EJ
    J Physiol; 1985 Dec; 369():311-21. PubMed ID: 3005558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of selective, high affinity [125I]-angiotensin and [125I]-bradykinin binding sites in rat intestinal epithelia.
    Cox HM; Munday KA; Poat JA
    Br J Pharmacol; 1986 Jan; 87(1):201-9. PubMed ID: 2869810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible involvement of noradrenaline in the response of rat kidney cortex slices to angiotensin [proceedings].
    Brunton J; Parsons BJ; Poat JA
    J Physiol; 1978 Nov; 284():73P-74P. PubMed ID: 215760
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.