These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21576017)

  • 21. Effect of different hydrolytic enzymes pretreatment for improving the hydrolysis and biodegradability of waste activated sludge.
    Chen J; Liu S; Wang Y; Huang W; Zhou J
    Water Sci Technol; 2018 May; 2017(2):592-602. PubMed ID: 29851412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using excess sludge as carbon source for enhanced nitrogen removal and sludge reduction with hydrolysis technology.
    Gao YQ; Peng YZ; Zhang JY; Wang JL; Ye L
    Water Sci Technol; 2010; 62(7):1536-43. PubMed ID: 20935370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids.
    Ucisik AS; Henze M
    Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Enhanced hydrolysis of excess sludge by external enzymes].
    Luo K; Yang Q; Li XM; Tang Y; Luo ZQ; Liu JJ
    Huan Jing Ke Xue; 2010 Mar; 31(3):763-7. PubMed ID: 20358840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced hydrolysis of carbohydrates in primary sludge under biosulfidogenic conditions.
    Whittington-Jones KJ; Molwantwa JB; Rose PD
    Water Res; 2006 May; 40(8):1577-82. PubMed ID: 16616950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel technology for sewage sludge utilization: preparation of amino acids chelated trace elements (AACTE) fertilizer.
    Liu Y; Kong S; Li Y; Zeng H
    J Hazard Mater; 2009 Nov; 171(1-3):1159-67. PubMed ID: 19616890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Partial least square modeling of hydrolysis: analyzing the impacts of pH and acetate.
    Lü F; He PJ; Shao LM
    J Environ Sci (China); 2006; 18(4):805-9. PubMed ID: 17078565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrolysis, acidification and dewaterability of waste activated sludge under alkaline conditions: combined effects of NaOH and Ca(OH)2.
    Su G; Huo M; Yuan Z; Wang S; Peng Y
    Bioresour Technol; 2013 May; 136():237-43. PubMed ID: 23567686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability of sewage sludge.
    Donoso-Bravo A; Pérez-Elvira S; Aymerich E; Fdz-Polanco F
    Bioresour Technol; 2011 Jan; 102(2):660-6. PubMed ID: 20813519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymatic extraction of activated sludge extracellular polymers and implications on bioflocculation.
    Sesay ML; Ozcengiz G; Dilek Sanin F
    Water Res; 2006 Apr; 40(7):1359-66. PubMed ID: 16549086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism for sludge acidification in aerobic treatment of coking wastewater.
    Chao YM; Tseng IC; Chang JS
    J Hazard Mater; 2006 Oct; 137(3):1781-7. PubMed ID: 16784811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous measurement of alpha-amylase and glucoamylase activities in sake rice koji by capillary electrophoresis of sodium dodecyl sulfate-protein complexes and activity measurement of glucoamylase by in-capillary enzyme reaction method.
    Watanabe T; Yamamoto A; Nagai S; Terabe S
    Electrophoresis; 1998 Oct; 19(13):2331-7. PubMed ID: 9788317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology.
    Zhang P; Chen Y; Zhou Q; Zheng X; Zhu X; Zhao Y
    Environ Sci Technol; 2010 Dec; 44(24):9343-8. PubMed ID: 21105739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of surfactants on waste activated sludge fermentation by pyrosequencing analysis.
    Zhou A; Liu W; Varrone C; Wang Y; Wang A; Yue X
    Bioresour Technol; 2015 Sep; 192():835-40. PubMed ID: 26081163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste.
    Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH
    Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward understanding the mechanism of improving the production of volatile fatty acids from activated sludge at pH 10.0.
    Yu GH; He PJ; Shao LM; He PP
    Water Res; 2008 Nov; 42(18):4637-44. PubMed ID: 18822441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Enhanced hydrolysis and acidification of waste activated sludge by alkyl polyglycosides].
    Chen C; Sun XY; Huang C; Shen JY; Wang LJ
    Huan Jing Ke Xue; 2014 Mar; 35(3):1009-15. PubMed ID: 24881390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzyme activities in activated sludge flocs.
    Yu GH; He PJ; Shao LM; Lee DJ
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):605-12. PubMed ID: 17932668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen leaching from soil treated with sludge.
    Sukreeyapongse O; Panichsakpatana S; Thongmarg J
    Water Sci Technol; 2001; 44(7):145-50. PubMed ID: 11724480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal.
    Li X; Chen H; Hu L; Yu L; Chen Y; Gu G
    Environ Sci Technol; 2011 Mar; 45(5):1834-9. PubMed ID: 21280571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.