BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 21576131)

  • 1. Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation.
    Brack KE; Coote JH; Ng GA
    Cardiovasc Res; 2011 Aug; 91(3):437-46. PubMed ID: 21576131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart.
    Brack KE; Patel VH; Coote JH; Ng GA
    J Physiol; 2007 Sep; 583(Pt 2):695-704. PubMed ID: 17627986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart.
    Ng GA; Brack KE; Patel VH; Coote JH
    Cardiovasc Res; 2007 Mar; 73(4):750-60. PubMed ID: 17217937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vagal ganglionic and nonadrenergic noncholinergic neurotransmission to the ferret lower oesophageal sphincter.
    Smid SD; Blackshaw LA
    Auton Neurosci; 2000 Dec; 86(1-2):30-6. PubMed ID: 11269922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation--tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure.
    Brack KE; Winter J; Ng GA
    Heart Fail Rev; 2013 Jul; 18(4):389-408. PubMed ID: 22678767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vagal nerve stimulation increases right ventricular contraction and relaxation and heart rate.
    Henning RJ; Feliciano L; Coers CM
    Cardiovasc Res; 1996 Nov; 32(5):846-53. PubMed ID: 8944815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protection against ventricular fibrillation via cholinergic receptor stimulation and the generation of nitric oxide.
    Kalla M; Chotalia M; Coughlan C; Hao G; Crabtree MJ; Tomek J; Bub G; Paterson DJ; Herring N
    J Physiol; 2016 Jul; 594(14):3981-92. PubMed ID: 26752781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sympatho-vagal interaction on ventricular electrophysiology and their modulation during beta-blockade.
    Chin SH; Allen E; Brack KE; Ng GA
    J Mol Cell Cardiol; 2020 Feb; 139():201-212. PubMed ID: 32004506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of stimulating non-myelinated vagal axons on atrio-ventricular conduction and left ventricular function in anaesthetized rabbits.
    Garcia Perez M; Jordan D
    Auton Neurosci; 2001 Jan; 86(3):183-91. PubMed ID: 11270096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vagal nerve stimulation during muscarinic and beta-adrenergic blockade causes significant coronary artery dilation.
    Feliciano L; Henning RJ
    J Auton Nerv Syst; 1998 Jan; 68(1-2):78-88. PubMed ID: 9531447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vagal nerve stimulation releases vasoactive intestinal peptide which significantly increases coronary artery blood flow.
    Feliciano L; Henning RJ
    Cardiovasc Res; 1998 Oct; 40(1):45-55. PubMed ID: 9876316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence of nitric oxide release from neuronal nitric oxide synthase activation in the left ventricle as a result of cervical vagus nerve stimulation.
    Brack KE; Patel VH; Mantravardi R; Coote JH; Ng GA
    J Physiol; 2009 Jun; 587(Pt 12):3045-54. PubMed ID: 19403619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning.
    Donato M; Buchholz B; Rodríguez M; Pérez V; Inserte J; García-Dorado D; Gelpi RJ
    Exp Physiol; 2013 Feb; 98(2):425-34. PubMed ID: 22872660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency vagus nerve stimulation improves portal hypertension in cirrhotic rats.
    Bockx I; Verdrengh K; Vander Elst I; van Pelt J; Nevens F; Laleman W; Cassiman D
    Gut; 2012 Apr; 61(4):604-12. PubMed ID: 22187073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vagal modulation of cardiac ventricular arrhythmia.
    Ng GA
    Exp Physiol; 2014 Feb; 99(2):295-9. PubMed ID: 24014808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronally released vasoactive intestinal polypeptide alters atrial electrophysiological properties and may promote atrial fibrillation.
    Xi Y; James Chao ZY; Yan W; Abbasi S; Yin X; Mathuria N; Patel M; Fan C; Sun J; Wu G; Wang S; Elayda M; Gao L; Wehrens XH; Lin SF; Cheng J
    Heart Rhythm; 2015 Jun; 12(6):1352-61. PubMed ID: 25748673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vagal stimulation promotes atrial electrical remodeling induced by rapid atrial pacing in dogs: evidence of a noncholinergic effect.
    Yang D; Xi Y; Ai T; Wu G; Sun J; Razavi M; Delapasse S; Shurail M; Gao L; Mathuria N; Elayda M; Cheng J
    Pacing Clin Electrophysiol; 2011 Sep; 34(9):1092-9. PubMed ID: 21793861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction.
    Tsutsumi T; Ide T; Yamato M; Kudou W; Andou M; Hirooka Y; Utsumi H; Tsutsui H; Sunagawa K
    Cardiovasc Res; 2008 Mar; 77(4):713-21. PubMed ID: 18065771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic atropine administration diminishes the contribution of vasoactive intestinal polypeptide to heart rate regulation.
    Kuncová J; Faitová S; Capouch J; Stengl M; Slavíková J
    Physiol Res; 2008; 57(6):827-837. PubMed ID: 18052688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The vagal control of the pyloric motor function: a physiological and immunohistochemical study in cat and man.
    Edin R
    Acta Physiol Scand Suppl; 1980; 485():1-30. PubMed ID: 6163319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.