These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 21576152)

  • 41. Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range.
    Tanaka S; Nogami D; Tsuda N; Miyake Y
    J Colloid Interface Sci; 2009 Jun; 334(2):188-94. PubMed ID: 19398105
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Particle dynamics and mixing in the frequency driven "Kelvin cat eyes" flow.
    Tsega Y; Michaelides EE; Eschenazi EV
    Chaos; 2001 Jun; 11(2):351-358. PubMed ID: 12779469
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-steady-state aerosol filtration in nanostructured fibrous media.
    Przekop R; Gradoń L
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1945):2476-84. PubMed ID: 21576162
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-diffusion of rodlike and spherical particles in a matrix of charged colloidal spheres: a comparison between fluorescence recovery after photobleaching and fluorescence correlation spectroscopy.
    Lellig C; Wagner J; Hempelmann R; Keller S; Lumma D; Härtl W
    J Chem Phys; 2004 Oct; 121(14):7022-9. PubMed ID: 15473763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rheology, microstructure and migration in brownian colloidal suspensions.
    Pan W; Caswell B; Karniadakis GE
    Langmuir; 2010 Jan; 26(1):133-42. PubMed ID: 20038167
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Pulsed Field Gradient NMR Technique for the Determination of the Structure of Suspensions of Non-Brownian Particles with Application to Packings of Spheres.
    Talini L; Leblond J; Feuillebois F
    J Magn Reson; 1998 Jun; 132(2):287-97. PubMed ID: 9632555
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of particles on the transition to turbulence in pipe flow.
    Matas JP; Morris JF; Guazzelli E
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):911-9. PubMed ID: 12804221
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites.
    Genovese DB
    Adv Colloid Interface Sci; 2012; 171-172():1-16. PubMed ID: 22304831
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cooperative motion of spheres arranged in periodic grids between two parallel walls.
    Bhattacharya S
    J Chem Phys; 2008 Feb; 128(7):074709. PubMed ID: 18298166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamics of rotating paramagnetic particles simulated by lattice Boltzmann and particle dynamics methods.
    Yadav A; Calhoun R; Phelan PE; Vuppu AK; Garcia AA; Hayes M
    IEE Proc Nanobiotechnol; 2006 Dec; 153(6):145-50. PubMed ID: 17187446
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of water dissociation and CO2 contamination on the electrophoretic mobility of a spherical particle in aqueous salt-free concentrated suspensions.
    Carrique F; Ruiz-Reina E
    J Phys Chem B; 2009 Jun; 113(25):8613-25. PubMed ID: 19485311
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural and dynamical analysis of monodisperse and polydisperse colloidal systems.
    Yiannourakou M; Economou IG; Bitsanis IA
    J Chem Phys; 2010 Dec; 133(22):224901. PubMed ID: 21171696
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A lattice Boltzmann method for dilute polymer solutions.
    Singh S; Subramanian G; Ansumali S
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2301-10. PubMed ID: 21536577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crowding effects in binary mixtures of rod-like and spherical particles.
    Lago S; Cuetos A; Martínez-Haya B; Rull LF
    J Mol Recognit; 2004; 17(5):417-25. PubMed ID: 15362100
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Class of periodic and quasiperiodic trajectories of particles settling under gravity in a viscous fluid.
    Ekiel-Jeżewska ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043007. PubMed ID: 25375593
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correction: Simulation of dense non-Brownian suspensions with the lattice Boltzmann method: shear jammed and fragile states.
    Pradipto ; Hayakawa H
    Soft Matter; 2022 Jan; 18(3):685-686. PubMed ID: 34989748
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrodynamic screening in sedimenting suspensions of non-Brownian spheres.
    Ladd AJ
    Phys Rev Lett; 1996 Feb; 76(8):1392-1395. PubMed ID: 10061709
    [No Abstract]   [Full Text] [Related]  

  • 58. Self-diffusion in suspensions of interacting Brownian particles.
    Cichocki B; Felderhof BU
    Phys Rev A; 1990 Nov; 42(10):6024-6031. PubMed ID: 9903882
    [No Abstract]   [Full Text] [Related]  

  • 59. Average volume of the domain visited by randomly injected spherical Brownian particles in d dimensions.
    Berezhkovskii AM; Weiss GH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1996 Jul; 54(1):92-99. PubMed ID: 9965051
    [No Abstract]   [Full Text] [Related]  

  • 60. Brownian dynamics of suspensions of rodlike particles.
    Branka AC; Heyes DM
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1994 Dec; 50(6):4810-4816. PubMed ID: 9962562
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.