BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21576758)

  • 1. Iterative dictionary construction for compression of large DNA data sets.
    Kuruppu S; Beresford-Smith B; Conway T; Zobel J
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):137-49. PubMed ID: 21576758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA sequence compression using the burrows-wheeler transform.
    Adjeroh D; Zhang Y; Mukherjee A; Powell M; Bell T
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():303-13. PubMed ID: 15838146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compression of Multiple DNA Sequences Using Intra-Sequence and Inter-Sequence Similarities.
    Cheng KO; Wu P; Law NF; Siu WC
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1322-32. PubMed ID: 26671804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CoGI: Towards Compressing Genomes as an Image.
    Xie X; Zhou S; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1275-85. PubMed ID: 26671800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SeqCompress: an algorithm for biological sequence compression.
    Sardaraz M; Tahir M; Ikram AA; Bajwa H
    Genomics; 2014 Oct; 104(4):225-8. PubMed ID: 25173568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New method for yeast identification using Burrows-Wheeler transform.
    Pokrzywa R
    J Bioinform Comput Biol; 2008 Apr; 6(2):403-13. PubMed ID: 18464330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified HuffBit Compress Algorithm - An Application of R.
    Habib N; Ahmed K; Jabin I; Rahman MM
    J Integr Bioinform; 2018 Feb; 15(3):. PubMed ID: 29470175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FRESCO: Referential compression of highly similar sequences.
    Wandelt S; Leser U
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1275-88. PubMed ID: 24524158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale compression of genomic sequence databases with the Burrows-Wheeler transform.
    Cox AJ; Bauer MJ; Jakobi T; Rosone G
    Bioinformatics; 2012 Jun; 28(11):1415-9. PubMed ID: 22556365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome compression: a novel approach for large collections.
    Deorowicz S; Danek A; Grabowski S
    Bioinformatics; 2013 Oct; 29(20):2572-8. PubMed ID: 23969136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological sequence compression algorithms.
    Matsumoto T; Sadakane K; Imai H
    Genome Inform Ser Workshop Genome Inform; 2000; 11():43-52. PubMed ID: 11700586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DELIMINATE--a fast and efficient method for loss-less compression of genomic sequences: sequence analysis.
    Mohammed MH; Dutta A; Bose T; Chadaram S; Mande SS
    Bioinformatics; 2012 Oct; 28(19):2527-9. PubMed ID: 22833526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using GPUs for the exact alignment of short-read genetic sequences by means of the Burrows-Wheeler transform.
    Salavert Torres J; Blanquer Espert I; Domínguez AT; Hernández García V; Medina Castelló I; Tárraga Giménez J; Dopazo Blázquez J
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1245-56. PubMed ID: 22450827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing compressed sequences for faster nucleotide BLAST searches.
    Cameron M; Williams HE
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):349-64. PubMed ID: 17666756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GDC 2: Compression of large collections of genomes.
    Deorowicz S; Danek A; Niemiec M
    Sci Rep; 2015 Jun; 5():11565. PubMed ID: 26108279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compression of DNA sequence reads in FASTQ format.
    Deorowicz S; Grabowski S
    Bioinformatics; 2011 Mar; 27(6):860-2. PubMed ID: 21252073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Compression of
    Rossignolo E; Comin M
    J Comput Biol; 2024 Jun; 31(6):524-538. PubMed ID: 38820168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering-Based Compression for Population DNA Sequences.
    Cheng KO; Law NF; Siu WC
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):208-221. PubMed ID: 29028207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A top-down linguistic approach to the analysis of genomic sequences: The metabotropic glutamate receptors 1 and 5 in human and in mouse as a case study.
    Menconi G; Puliti A; Sbrana I; Conti V; Marangoni R
    J Theor Biol; 2011 Feb; 270(1):134-42. PubMed ID: 21093453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual sequences in large sets of gene sequences may be distinguished efficiently by combinations of shared sub-sequences.
    Gibbs MJ; Armstrong JS; Gibbs AJ
    BMC Bioinformatics; 2005 Apr; 6():90. PubMed ID: 15817134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.