These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21576803)

  • 1. Finite size effect on nanomechanical mass detection: the role of surface elasticity.
    Dai MD; Kim CW; Eom K
    Nanotechnology; 2011 Jul; 22(26):265502. PubMed ID: 21576803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: the effective strain mechanism.
    Jiang JW; Park HS; Rabczuk T
    Nanotechnology; 2012 Nov; 23(47):475501. PubMed ID: 23117225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable micro- and nanomechanical resonators.
    Zhang WM; Hu KM; Peng ZK; Meng G
    Sensors (Basel); 2015 Oct; 15(10):26478-566. PubMed ID: 26501294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear vibration behavior of graphene resonators and their applications in sensitive mass detection.
    Dai MD; Kim CW; Eom K
    Nanoscale Res Lett; 2012 Sep; 7(1):499. PubMed ID: 22947221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.
    Kim CW; Dai MD; Eom K
    Beilstein J Nanotechnol; 2016; 7():685-96. PubMed ID: 27335758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors.
    Kacem N; Hentz S; Pinto D; Reig B; Nguyen V
    Nanotechnology; 2009 Jul; 20(27):275501. PubMed ID: 19528678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving Ultrawide Tunability in Monolithically Fabricated Si Nanoresonator Devices.
    Yu W; Ohara Y; Meffan C; Hirotani J; Banerjee A; Tsuchiya T
    Nano Lett; 2023 Dec; 23(24):11517-11525. PubMed ID: 38100378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-pg mass sensing and measurement with an optomechanical oscillator.
    Liu F; Alaie S; Leseman ZC; Hossein-Zadeh M
    Opt Express; 2013 Aug; 21(17):19555-67. PubMed ID: 24105503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface effects in various bending-based test methods for measuring the elastic property of nanowires.
    Zheng XP; Cao YP; Li B; Feng XQ; Wang GF
    Nanotechnology; 2010 May; 21(20):205702. PubMed ID: 20413843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaching the Strain-Free Limit in Ultrathin Nanomechanical Resonators.
    Zhou J; Moldovan N; Stan L; Cai H; Czaplewski DA; López D
    Nano Lett; 2020 Aug; 20(8):5693-5698. PubMed ID: 32530287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators.
    Eriksson AM; Midtvedt D; Croy A; Isacsson A
    Nanotechnology; 2013 Oct; 24(39):395702. PubMed ID: 24008430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence of Fano resonances in nanomechanical resonators.
    Stassi S; Chiadò A; Calafiore G; Palmara G; Cabrini S; Ricciardi C
    Sci Rep; 2017 Apr; 7(1):1065. PubMed ID: 28432315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered.
    Park HS
    Nanotechnology; 2009 Mar; 20(11):115701. PubMed ID: 19420449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prion protein detection using nanomechanical resonator arrays and secondary mass labeling.
    Varshney M; Waggoner PS; Tan CP; Aubin K; Montagna RA; Craighead HG
    Anal Chem; 2008 Mar; 80(6):2141-8. PubMed ID: 18271602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite Element Analysis on Nanomechanical Sensing of Cellular Forces.
    Imamura G; Shiba K; Yoshikawa G
    Anal Sci; 2016; 32(11):1189-1194. PubMed ID: 27829624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory.
    Li XF; Tang GJ; Shen ZB; Lee KY
    Ultrasonics; 2015 Jan; 55():75-84. PubMed ID: 25149195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass detection with a nonlinear nanomechanical resonator.
    Buks E; Yurke B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046619. PubMed ID: 17155204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-sensitivity linear piezoresistive transduction for nanomechanical beam resonators.
    Sansa M; Fernández-Regúlez M; Llobet J; San Paulo Á; Pérez-Murano F
    Nat Commun; 2014 Jul; 5():4313. PubMed ID: 25000256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems.
    Jiang C; Cui Y; Zhu KD
    Opt Express; 2014 Jun; 22(11):13773-83. PubMed ID: 24921569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transduction of Single Nanomechanical Pillar Resonators by Scattering of Surface Acoustic Waves.
    Kähler H; Arthaber H; Winkler R; West RG; Ignat I; Plank H; Schmid S
    Nano Lett; 2023 May; 23(10):4344-4350. PubMed ID: 37167540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.