These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21577190)

  • 1. Robotically-steerable catheters and their role in the visceral aortic segment.
    Riga C; Bicknell C; Hamady MS; Cheshire NJ
    J Cardiovasc Surg (Torino); 2011 Jun; 52(3):353-62. PubMed ID: 21577190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of robotic endovascular catheters for arch vessel cannulation.
    Riga CV; Bicknell CD; Hamady MS; Cheshire NJ
    J Vasc Surg; 2011 Sep; 54(3):799-809. PubMed ID: 21620623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible robotic catheters in the visceral segment of the aorta: advantages and limitations.
    Li MM; Hamady MS; Bicknell CD; Riga CV
    J Cardiovasc Surg (Torino); 2018 Jun; 59(3):317-321. PubMed ID: 29557586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of robotic endovascular catheters in fenestrated stent grafting.
    Riga CV; Cheshire NJ; Hamady MS; Bicknell CD
    J Vasc Surg; 2010 Apr; 51(4):810-9; discussion 819-20. PubMed ID: 20347674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tortuous iliac systems--a significant burden to conventional cannulation in the visceral segment: is there a role for robotic catheter technology?
    Riga CV; Bicknell CD; Hamady M; Cheshire N
    J Vasc Interv Radiol; 2012 Oct; 23(10):1369-75. PubMed ID: 22920731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical applications of robotic technology in vascular and endovascular surgery.
    Antoniou GA; Riga CV; Mayer EK; Cheshire NJ; Bicknell CD
    J Vasc Surg; 2011 Feb; 53(2):493-9. PubMed ID: 20801611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced catheter technology: is this the answer to overcoming the long learning curve in complex endovascular procedures.
    Riga CV; Bicknell CD; Sidhu R; Cochennec F; Normahani P; Chadha P; Kashef E; Hamady M; Cheshire NJ
    Eur J Vasc Endovasc Surg; 2011 Oct; 42(4):531-8. PubMed ID: 21388839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steerable catheters in minimally invasive vascular surgery.
    Fu Y; Liu H; Huang W; Wang S; Liang Z
    Int J Med Robot; 2009 Dec; 5(4):381-91. PubMed ID: 19795440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair.
    de Ruiter QM; Moll FL; van Herwaarden JA
    J Vasc Surg; 2015 Jan; 61(1):256-64. PubMed ID: 25441011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.
    Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing contact forces in the arch and supra-aortic vessels using the Magellan robot.
    Rafii-Tari H; Riga CV; Payne CJ; Hamady MS; Cheshire NJ; Bicknell CD; Yang GZ
    J Vasc Surg; 2016 Nov; 64(5):1422-1432. PubMed ID: 26386511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote control catheter navigation: options for guidance under MRI.
    Muller L; Saeed M; Wilson MW; Hetts SW
    J Cardiovasc Magn Reson; 2012 Jun; 14(1):33. PubMed ID: 22655535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries.
    Bismuth J; Duran C; Stankovic M; Gersak B; Lumsden AB
    J Vasc Surg; 2013 Feb; 57(2 Suppl):14S-9S. PubMed ID: 23336849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A randomized, controlled animal trial demonstrating the feasibility and safety of the Magellan™ endovascular robotic system.
    Duran C; Lumsden AB; Bismuth J
    Ann Vasc Surg; 2014 Feb; 28(2):470-8. PubMed ID: 24485777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current status of endovascular catheter robotics.
    Lumsden AB; Bismuth J
    J Cardiovasc Surg (Torino); 2018 Jun; 59(3):310-316. PubMed ID: 29480668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic endovascular surgery.
    Au S; Ko K; Tsang J; Chan YC
    Asian Cardiovasc Thorac Ann; 2014 Jan; 22(1):110-4. PubMed ID: 24585662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical HMM based learning of navigation primitives for cooperative robotic endovascular catheterization.
    Rafii-Tari H; Liu J; Payne CJ; Bicknell C; Yang GZ
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):496-503. PubMed ID: 25333155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning-based endovascular navigation through the use of non-rigid registration for collaborative robotic catheterization.
    Chi W; Liu J; Rafii-Tari H; Riga C; Bicknell C; Yang GZ
    Int J Comput Assist Radiol Surg; 2018 Jun; 13(6):855-864. PubMed ID: 29651714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of robotic endovascular catheters in the facilitation of transcatheter aortic valve implantation.
    Rippel RA; Rolls AE; Riga CV; Hamady M; Cheshire NJ; Bicknell CD
    Eur J Cardiothorac Surg; 2014 May; 45(5):836-41. PubMed ID: 24296984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current and emerging robot-assisted endovascular catheterization technologies: a review.
    Rafii-Tari H; Payne CJ; Yang GZ
    Ann Biomed Eng; 2014 Apr; 42(4):697-715. PubMed ID: 24281653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.