These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 2157784)
21. Tumor necrosis factor-alpha regulates expression of receptors for formyl-methionyl-leucyl-phenylalanine, leukotriene B4, and platelet-activating factor. Dissociation from priming in human polymorphonuclear neutrophils. O'Flaherty JT; Rossi AG; Redman JF; Jacobson DP J Immunol; 1991 Dec; 147(11):3842-7. PubMed ID: 1658151 [TBL] [Abstract][Full Text] [Related]
22. Temporal adaptation of neutrophil oxidative responsiveness to n-formyl-methionyl-leucyl-phenylalanine. Acceleration by granulocyte-macrophage colony stimulating factor. English D; Broxmeyer HE; Gabig TG; Akard LP; Williams DE; Hoffman R J Immunol; 1988 Oct; 141(7):2400-6. PubMed ID: 3049807 [TBL] [Abstract][Full Text] [Related]
23. Desensitization of formyl peptide receptors is abolished in calcium ionophore-primed neutrophils: an association of the ligand-receptor complex to the cytoskeleton is not required for a rapid termination of the NADPH-oxidase response. Liu L; Harbecke O; Elwing H; Follin P; Karlsson A; Dahlgren C J Immunol; 1998 Mar; 160(5):2463-8. PubMed ID: 9498791 [TBL] [Abstract][Full Text] [Related]
24. Leukocyte inhibitory factor (LIF) potentiates human macrophage aggregation and activation responses to calcium ionophore A23187 and directly induces leukotriene B4 and thromboxane A2 release. Conti P; Barbacane RC; Reale M; Panara MR; Placido FC; Mier JW; Castracane JM; Dempsey RA Biotechnol Ther; 1993; 4(3-4):239-52. PubMed ID: 8292972 [TBL] [Abstract][Full Text] [Related]
25. The leukotriene B4 paradox: neutrophils can, but will not, respond to ligand-receptor interactions by forming leukotriene B4 or its omega-metabolites. Haines KA; Giedd KN; Rich AM; Korchak HM; Weissmann G Biochem J; 1987 Jan; 241(1):55-62. PubMed ID: 3032161 [TBL] [Abstract][Full Text] [Related]
26. Calcium ionophore potentiates chemotactic peptide and platelet activating factor in stimulating thromboxane B2 and leukotriene B4 biosynthesis in human neutrophils. Tanizawa H; Tai HH Prostaglandins Leukot Essent Fatty Acids; 1990 May; 40(1):45-9. PubMed ID: 2169061 [TBL] [Abstract][Full Text] [Related]
27. Formyl-methionyl-leucyl-phenylalanine and a calcium ionophore A23187 reverse the inhibition of phorbol myristate acetate-induced oxidative burst by linoleic and oleic acid anilides. Heiskanen KM; Savolainen KM Toxicology; 1996 Jun; 110(1-3):39-45. PubMed ID: 8658558 [TBL] [Abstract][Full Text] [Related]
28. Essential fatty acid deficiency and neutrophil function: studies of lipid-free total parenteral nutrition in monkeys. Palmblad J; Wannemacher RW; Salem N; Kuhns DB; Wright DG J Lab Clin Med; 1988 Jun; 111(6):634-44. PubMed ID: 2836537 [TBL] [Abstract][Full Text] [Related]
29. In vitro effects of omega-3 fatty acids on neutrophil intracellular calcium homeostasis and receptor expression for FMLP and LTB4. Georgilis K; Klempner MS Inflammation; 1988 Oct; 12(5):475-90. PubMed ID: 2848770 [TBL] [Abstract][Full Text] [Related]
31. Modulation of leukotriene release from human polymorphonuclear leucocytes by PMA and arachidonic acid. Raulf M; König W Immunology; 1988 May; 64(1):51-9. PubMed ID: 2838420 [TBL] [Abstract][Full Text] [Related]
32. The rabbit neutrophil N-formyl peptide receptor. cDNA cloning, expression, and structure/function implications. Ye RD; Quehenberger O; Thomas KM; Navarro J; Cavanagh SL; Prossnitz ER; Cochrane CG J Immunol; 1993 Feb; 150(4):1383-94. PubMed ID: 8432984 [TBL] [Abstract][Full Text] [Related]
33. Effect of leukotriene B4 on enhancement of superoxide production evoked by formyl-methionyl-leucyl-phenylalanine in myeloid differentiated HL-60 cells: possible involvement of intracellular calcium influx and high affinity receptor for leukotriene B4. Harada Y Hiroshima J Med Sci; 1990 Sep; 39(3):89-94. PubMed ID: 2178158 [TBL] [Abstract][Full Text] [Related]
34. Platelet enhancement of O2-. responses in stimulated human neutrophils. Identification of platelet factor as adenine nucleotide. Ward PA; Cunningham TW; McCulloch KK; Phan SH; Powell J; Johnson KJ Lab Invest; 1988 Jan; 58(1):37-47. PubMed ID: 2826882 [TBL] [Abstract][Full Text] [Related]
35. Essential fatty acid deficiency in rats: effects on arachidonate metabolism, generation of cyclooxygenase products and functional responses in neutrophils. Gyllenhammar H; Ringertz B; Becker W; Svensson J; Palmblad J Immunol Lett; 1986 Oct; 13(4):185-9. PubMed ID: 3095230 [TBL] [Abstract][Full Text] [Related]
36. Regulation of neutrophil inflammatory mediator release: chemotactic peptide activation of stimulus-dependent cytotoxicity. English D; Lukens JN J Immunol; 1983 Feb; 130(2):850-6. PubMed ID: 6294178 [TBL] [Abstract][Full Text] [Related]
38. Temporal adaptation of human neutrophil metabolic responsiveness to the peptide formylmethionyl-leucyl phenylalanine: a comparison between human neutrophils and granule-depleted neutrophil cytoplasts. Dahlgren C Cell Biochem Funct; 1990 Jan; 8(1):57-64. PubMed ID: 2160338 [TBL] [Abstract][Full Text] [Related]
39. Granulocytes from chronic myeloid leukemia (CML) patients show differential response to different chemoattractants. Radhika V; Thennarasu S; Naik NR; Kumar A; Advani SH; Bhisey AN Am J Hematol; 1996 Jul; 52(3):155-64. PubMed ID: 8756080 [TBL] [Abstract][Full Text] [Related]
40. Effect of arachidonic acid reacylation on leukotriene biosynthesis in human neutrophils stimulated with granulocyte-macrophage colony-stimulating factor and formyl-methionyl-leucyl-phenylalanine. Zarini S; Gijón MA; Folco G; Murphy RC J Biol Chem; 2006 Apr; 281(15):10134-42. PubMed ID: 16495221 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]