BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21580800)

  • 1. Rupture threshold characterization of polymer-shelled ultrasound contrast agents subjected to static overpressure.
    Chitnis PV; Lee P; Mamou J; Allen JS; Böhmer M; Ketterling JA
    J Appl Phys; 2011 Apr; 109(8):84906-8490610. PubMed ID: 21580800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of shell properties on high-frequency ultrasound imaging and drug delivery using polymer-shelled microbubbles.
    Chitnis PV; Koppolu S; Mamou J; Chlon C; Ketterling JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):53-64. PubMed ID: 23287913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of rupture dynamics to the nonlinear backscatter response from polymer-shelled ultrasound contrast agents.
    Koppolu S; Chitnis PV; Mamou J; Allen JS; Ketterling JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):494-501. PubMed ID: 25935932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of polymer shelled microbubbles in wall less flow phantom using high frequency ultrasound and video microscopy.
    Chitnis PV; Lee P; Dayton PA; Mamou J; Ketterling JA
    Bubble Sci Eng Technol; 2011 Nov; 3(2):73-78. PubMed ID: 23795208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sonochemiluminescence observation of lipid- and polymer-shelled ultrasound contrast agents in 1.2 MHz focused ultrasound field.
    Qiao Y; Cao H; Zhang S; Yin H; Wan M
    Ultrason Sonochem; 2013 Jan; 20(1):162-70. PubMed ID: 22819330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro contrast-enhanced ultrasound measurements of capillary microcirculation: comparison between polymer- and phospholipid-shelled microbubbles.
    Grishenkov D; Kari L; Brodin LK; Brismar TB; Paradossi G
    Ultrasonics; 2011 Jan; 51(1):40-8. PubMed ID: 20542310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents.
    Radhakrishnan K; Bader KB; Haworth KJ; Kopechek JA; Raymond JL; Huang SL; McPherson DD; Holland CK
    Phys Med Biol; 2013 Sep; 58(18):6541-63. PubMed ID: 24002637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of ultrasound-induced fracture of polymer-shelled ultrasonic contrast agents by correlation analysis.
    Pecorari C; Grishenkov D
    J Acoust Soc Am; 2007 Oct; 122(4):2425-30. PubMed ID: 17902876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted binding of PEG-lipid modified polymer ultrasound contrast agents with tiered surface architecture.
    Duncanson WJ; Oum K; Eisenbrey JR; Cleveland RO; Wheatley MA; Wong JY
    Biotechnol Bioeng; 2010 Jun; 106(3):501-6. PubMed ID: 20091738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble.
    Kodama T; Tomita Y; Koshiyama K; Blomley MJ
    Ultrasound Med Biol; 2006 Jun; 32(6):905-14. PubMed ID: 16785012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of laboratory Ultrasound Contrast Agents.
    Park J; Park D; Shin U; Moon S; Kim C; Kim HS; Park H; Choi K; Jung B; Oh J; Seo J
    Molecules; 2013 Oct; 18(10):13078-95. PubMed ID: 24152677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents.
    Chen WS; Matula TJ; Brayman AA; Crum LA
    J Acoust Soc Am; 2003 Jan; 113(1):643-51. PubMed ID: 12558300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.
    Guo X; Li Q; Zhang Z; Zhang D; Tu J
    J Acoust Soc Am; 2013 Aug; 134(2):1622-31. PubMed ID: 23927202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical estimation of attenuation coefficient of resonant ultrasound contrast agents.
    Xia L
    J Acoust Soc Am; 2020 May; 147(5):3061. PubMed ID: 32486799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating concentration of ultrasound contrast agents with backscatter coefficients: experimental and theoretical aspects.
    Leithem SM; Lavarello RJ; O'Brien WD; Oelze ML
    J Acoust Soc Am; 2012 Mar; 131(3):2295-305. PubMed ID: 22423724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband attenuation measurements of phospholipid-shelled ultrasound contrast agents.
    Raymond JL; Haworth KJ; Bader KB; Radhakrishnan K; Griffin JK; Huang SL; McPherson DD; Holland CK
    Ultrasound Med Biol; 2014 Feb; 40(2):410-21. PubMed ID: 24262056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modes and acoustic scattering of microspheres and ultrasound contrast agents.
    Falou O; Jafari Sojahrood A; Kumaradas JC; Kolios MC
    J Acoust Soc Am; 2012 Sep; 132(3):1820-9. PubMed ID: 22978909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gauging the likelihood of stable cavitation from ultrasound contrast agents.
    Bader KB; Holland CK
    Phys Med Biol; 2013 Jan; 58(1):127-44. PubMed ID: 23221109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impulse response method for characterization of echogenic liposomes.
    Raymond JL; Luan Y; van Rooij T; Kooiman K; Huang SL; McPherson DD; Versluis M; de Jong N; Holland CK
    J Acoust Soc Am; 2015 Apr; 137(4):1693-703. PubMed ID: 25920822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging with ultrasound contrast agents: current status and future.
    Chong WK; Papadopoulou V; Dayton PA
    Abdom Radiol (NY); 2018 Apr; 43(4):762-772. PubMed ID: 29508011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.