These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2158092)

  • 1. Evaluation of homology modeling of HIV protease.
    Weber IT
    Proteins; 1990; 7(2):172-84. PubMed ID: 2158092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a retroviral protease proves relationship to aspartic protease family.
    Miller M; Jaskólski M; Rao JK; Leis J; Wlodawer A
    Nature; 1989 Feb; 337(6207):576-9. PubMed ID: 2536902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of the sequences and structures of HIV-1 and HIV-2 proteases.
    Gustchina A; Weber IT
    Proteins; 1991; 10(4):325-39. PubMed ID: 1946342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1.
    Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM
    Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitors.
    Friedler A; Blumenzweig I; Baraz L; Steinitz M; Kotler M; Gilon C
    J Mol Biol; 1999 Mar; 287(1):93-101. PubMed ID: 10074409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1.
    Navia MA; Fitzgerald PM; McKeever BM; Leu CT; Heimbach JC; Herber WK; Sigal IS; Darke PL; Springer JP
    Nature; 1989 Feb; 337(6208):615-20. PubMed ID: 2645523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease.
    Wlodawer A; Miller M; Jaskólski M; Sathyanarayana BK; Baldwin E; Weber IT; Selk LM; Clawson L; Schneider J; Kent SB
    Science; 1989 Aug; 245(4918):616-21. PubMed ID: 2548279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A side chain at position 48 of the human immunodeficiency virus type-1 protease flap provides an additional specificity determinant.
    Moody MD; Pettit SC; Shao W; Everitt L; Loeb DD; Hutchison CA; Swanstrom R
    Virology; 1995 Mar; 207(2):475-85. PubMed ID: 7886951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies of the retroviral proteinase from avian myeloblastosis associated virus.
    Ohlendorf DH; Foundling SI; Wendoloski JJ; Sedlacek J; Strop P; Salemme FR
    Proteins; 1992 Nov; 14(3):382-91. PubMed ID: 1332025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding.
    Thorsteinsdottir HB; Schwede T; Zoete V; Meuwly M
    Proteins; 2006 Nov; 65(2):407-23. PubMed ID: 16941468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of a leucine zipper motif predicted for the integrase of human immunodeficiency virus type 1.
    Wang CY; Yang CF; Lai MC; Lee YH; Lee TL; Lin TH
    Biopolymers; 1994 Aug; 34(8):1027-36. PubMed ID: 8075385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural model for the retroviral proteases.
    Pearl LH; Taylor WR
    Nature; 1987 Sep 24-30; 329(6137):351-4. PubMed ID: 3306411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical studies of relaxation of a monomeric subunit of HIV-1 protease in water using molecular dynamics.
    Venable RM; Brooks BR; Carson FW
    Proteins; 1993 Apr; 15(4):374-84. PubMed ID: 8460108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293)--an initial glance of the viral DNA binding platform.
    Chen Z; Yan Y; Munshi S; Li Y; Zugay-Murphy J; Xu B; Witmer M; Felock P; Wolfe A; Sardana V; Emini EA; Hazuda D; Kuo LC
    J Mol Biol; 2000 Feb; 296(2):521-33. PubMed ID: 10669606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease.
    Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS
    Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete mutagenesis of the HIV-1 protease.
    Loeb DD; Swanstrom R; Everitt L; Manchester M; Stamper SE; Hutchison CA
    Nature; 1989 Aug; 340(6232):397-400. PubMed ID: 2666861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophilic peptides derived from the transframe region of Gag-Pol inhibit the HIV-1 protease.
    Louis JM; Dyda F; Nashed NT; Kimmel AR; Davies DR
    Biochemistry; 1998 Feb; 37(8):2105-10. PubMed ID: 9485357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homology-modeled structure of the yeast mitochondrial citrate transport protein.
    Walters DE; Kaplan RS
    Biophys J; 2004 Aug; 87(2):907-11. PubMed ID: 15298898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.