These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 2158191)
1. [Recent pathophysiologic aspects of atherogenesis]. Kostner G Wien Med Wochenschr; 1990 Feb; 140(4):101-9. PubMed ID: 2158191 [TBL] [Abstract][Full Text] [Related]
2. [The role of apolipoproteins in lipid metabolism]. Karádi I; Kostner GM Ther Umsch; 1990 Jun; 47(6):467-74. PubMed ID: 2165281 [TBL] [Abstract][Full Text] [Related]
3. The role of lipoprotein receptors in lipid transport and in the pathogenesis of the hyperlipoproteinemias. Chait A Spec Top Endocrinol Metab; 1983; 5():1-53. PubMed ID: 6322371 [TBL] [Abstract][Full Text] [Related]
4. [Physiology and pathophysiology of lipoprotein metabolism--relation to hyperlipemias and arteriosclerosis]. Greten H; Windler E Internist (Berl); 1985 Jul; 26(7):399-404. PubMed ID: 2993190 [No Abstract] [Full Text] [Related]
5. [Metabolism and possible mechanisms of atherogenesis induced by lipoprotein (a)]. Krempler F Wien Klin Wochenschr Suppl; 1984; 151():1-12. PubMed ID: 6091345 [TBL] [Abstract][Full Text] [Related]
7. Increased binding of LDL and VLDL to apo B,E receptors of hepatic plasma membrane of rats treated with Fibernat. Venkatesan N; Devaraj SN; Devaraj H Eur J Nutr; 2003 Oct; 42(5):262-71. PubMed ID: 14569407 [TBL] [Abstract][Full Text] [Related]
9. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Skålén K; Gustafsson M; Rydberg EK; Hultén LM; Wiklund O; Innerarity TL; Borén J Nature; 2002 Jun; 417(6890):750-4. PubMed ID: 12066187 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Takahashi K; Takeya M; Sakashita N Med Electron Microsc; 2002 Dec; 35(4):179-203. PubMed ID: 12658354 [TBL] [Abstract][Full Text] [Related]
11. Role of the high density lipoprotein-receptor cycle in macrophage-cholesterol metabolism. Schmitz G; Robenek H; Assmann G Klin Wochenschr; 1986 Oct; 64(19):979-85. PubMed ID: 3023738 [TBL] [Abstract][Full Text] [Related]
12. The role of dietary oxidized cholesterol and oxidized fatty acids in the development of atherosclerosis. Staprans I; Pan XM; Rapp JH; Feingold KR Mol Nutr Food Res; 2005 Nov; 49(11):1075-82. PubMed ID: 16270280 [TBL] [Abstract][Full Text] [Related]
13. [Parameters of normal and disordered lipid metabolism in the progression and regression of arteriosclerosis]. Künnert B Z Gesamte Inn Med; 1986 Jul; 41(14):394-9. PubMed ID: 3765740 [TBL] [Abstract][Full Text] [Related]
14. The low density lipoprotein and low density lipoprotein receptors and their possible importance in the pathogenesis of atherosclerosis. Dresel HA; Friedrich EA; Otto I; Waldherr R; Schettler G Arzneimittelforschung; 1985; 35(12A):1936-40. PubMed ID: 3913426 [TBL] [Abstract][Full Text] [Related]
15. Hepatic cholesterol and bile acid synthesis, low-density lipoprotein receptor function, and plasma and fecal sterol levels in mice: effects of apolipoprotein E deficiency and probucol or phytosterol treatment. Moghadasian MH; Nguyen LB; Shefer S; Salen G; Batta AK; Frohlich JJ Metabolism; 2001 Jun; 50(6):708-14. PubMed ID: 11398149 [TBL] [Abstract][Full Text] [Related]
16. Effects of genetic mechanisms on plasma lipoprotein metabolism and the pathogenesis of atherosclerosis. Kwiterovich PO; Bachorik PS; Chatterjee S Prog Clin Biol Res; 1979; 32():65-112. PubMed ID: 230521 [No Abstract] [Full Text] [Related]
17. Development of accelerated atherosclerosis. Concepts derived from cell biology and animal model studies. Mahley RW Arch Pathol Lab Med; 1983 Aug; 107(8):393-9. PubMed ID: 6307210 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of action of niacin. Kamanna VS; Kashyap ML Am J Cardiol; 2008 Apr; 101(8A):20B-26B. PubMed ID: 18375237 [TBL] [Abstract][Full Text] [Related]
19. Hepatic expression of apolipoprotein E inhibits progression of atherosclerosis without reducing cholesterol levels in LDL receptor-deficient mice. Tsukamoto K; Tangirala RK; Chun S; Usher D; Puré E; Rader DJ Mol Ther; 2000 Feb; 1(2):189-94. PubMed ID: 10933930 [TBL] [Abstract][Full Text] [Related]
20. The molecular genetic basis and diagnosis of familial hypercholesterolemia in Denmark. Jensen HK Dan Med Bull; 2002 Nov; 49(4):318-45. PubMed ID: 12553167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]