BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21584492)

  • 1. Production of free methylarginines via the proteasome and autophagy pathways in cultured cells.
    Shirakawa T; Kako K; Shimada T; Nagashima Y; Nakamura A; Ishida J; Fukamizu A
    Mol Med Rep; 2011; 4(4):615-20. PubMed ID: 21584492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The methylarginines NMMA, ADMA, and SDMA are ubiquitous constituents of the main vegetables of human nutrition.
    Servillo L; Giovane A; Cautela D; Castaldo D; Balestrieri ML
    Nitric Oxide; 2013 Apr; 30():43-8. PubMed ID: 23438481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biological and pathophysiological roles of endogenous methylarginines as inhibitors of nitric oxide synthase].
    Masuda H; Azuma H
    Nihon Yakurigaku Zasshi; 2002 Jan; 119(1):29-35. PubMed ID: 11862754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of free methylarginines in rat tissues and in the bovine brain.
    Ueno S; Sano A; Kotani K; Kondoh K; Kakimoto Y
    J Neurochem; 1992 Dec; 59(6):2012-6. PubMed ID: 1431891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological significance of endogenous methylarginines that inhibit nitric oxide synthases.
    Leiper J; Vallance P
    Cardiovasc Res; 1999 Aug; 43(3):542-8. PubMed ID: 10690326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and identification of methylarginines from bovine brain.
    Kotani K; Ueno S; Sano A; Kakimoto Y
    J Neurochem; 1992 Mar; 58(3):1127-9. PubMed ID: 1737987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted metabolomic evaluation of arginine methylation and cardiovascular risks: potential mechanisms beyond nitric oxide synthase inhibition.
    Wang Z; Tang WH; Cho L; Brennan DM; Hazen SL
    Arterioscler Thromb Vasc Biol; 2009 Sep; 29(9):1383-91. PubMed ID: 19542023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylarginine efflux in nutrient-deprived yeast mitigates disruption of nitric oxide synthesis.
    Brown JI; Alibhai J; Zhu E; Frankel A
    Amino Acids; 2023 Feb; 55(2):215-233. PubMed ID: 36454288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of Arginine and Its Methylated Derivatives in Plasma by High-Performance Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS).
    Vicente FB; Vespa G; Miller A; Haymond S
    Methods Mol Biol; 2016; 1378():21-30. PubMed ID: 26602113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From arginine methylation to ADMA: a novel mechanism with therapeutic potential in chronic lung diseases.
    Zakrzewicz D; Eickelberg O
    BMC Pulm Med; 2009 Jan; 9():5. PubMed ID: 19178698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatographic-mass spectrometric methods for the quantification of L-arginine and its methylated metabolites in biological fluids.
    Martens-Lobenhoffer J; Bode-Böger SM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 851(1-2):30-41. PubMed ID: 16949893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography.
    Wu G; Meininger CJ
    Methods Enzymol; 2008; 440():177-89. PubMed ID: 18423217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragmentation pathways of N(G)-methylated and unmodified arginine residues in peptides studied by ESI-MS/MS and MALDI-MS.
    Gehrig PM; Hunziker PE; Zahariev S; Pongor S
    J Am Soc Mass Spectrom; 2004 Feb; 15(2):142-9. PubMed ID: 14766281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of ADMA: analytical approaches.
    Schwedhelm E
    Vasc Med; 2005 Jul; 10 Suppl 1():S89-95. PubMed ID: 16444874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma concentrations of arginine and asymmetric dimethylarginine do not reflect their intracellular concentrations in peripheral blood mononuclear cells.
    Davids M; Teerlink T
    Metabolism; 2013 Oct; 62(10):1455-61. PubMed ID: 23890667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine methylation in yeast proteins during stationary-phase growth and heat shock.
    Lakowski TM; Pak ML; Szeitz A; Thomas D; Vhuiyan MI; Clement B; Frankel A
    Amino Acids; 2015 Dec; 47(12):2561-71. PubMed ID: 26189025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PRMT-5 converts monomethylarginines into symmetrical dimethylarginines in Caenorhabditis elegans.
    Kanou A; Kako K; Hirota K; Fukamizu A
    J Biochem; 2017 Feb; 161(2):231-235. PubMed ID: 28173048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization and role of nitric oxide synthase and endogenous nitric oxide synthase inhibitors in the rabbit lower urinary tract.
    Masuda H; Tsujii T; Okuno T; Kihara K; Goto M; Azuma H
    J Urol; 2002 May; 167(5):2235-40. PubMed ID: 11956485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacology and clinical pharmacology of methylarginines used as inhibitors of nitric oxide synthases.
    Kittel A; Maas R
    Curr Pharm Des; 2014; 20(22):3530-47. PubMed ID: 24180385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4.
    Lakowski TM; Frankel A
    Biochem J; 2009 Jun; 421(2):253-61. PubMed ID: 19405910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.