These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 21584650)
1. New approaches to Prunus transcriptome analysis. Martínez-Gómez P; Crisosto CH; Bonghi C; Rubio M Genetica; 2011 Jun; 139(6):755-69. PubMed ID: 21584650 [TBL] [Abstract][Full Text] [Related]
2. Microarray analysis of differentially expressed genes engaged in fruit development between Prunus mume and Prunus armeniaca. Li X; Korir NK; Liu L; Shangguan L; Wang Y; Han J; Chen M; Fang J J Plant Physiol; 2012 Nov; 169(17):1776-88. PubMed ID: 23036314 [TBL] [Abstract][Full Text] [Related]
3. Deep RNA-Seq uncovers the peach transcriptome landscape. Wang L; Zhao S; Gu C; Zhou Y; Zhou H; Ma J; Cheng J; Han Y Plant Mol Biol; 2013 Nov; 83(4-5):365-77. PubMed ID: 23783411 [TBL] [Abstract][Full Text] [Related]
4. Clarifying omics concepts, challenges, and opportunities for Prunus breeding in the postgenomic era. Martínez-Gómez P; Sánchez-Pérez R; Rubio M OMICS; 2012 May; 16(5):268-83. PubMed ID: 22394278 [TBL] [Abstract][Full Text] [Related]
5. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus). Zhu Y; Li Y; Xin D; Chen W; Shao X; Wang Y; Guo W Gene; 2015 Jan; 555(2):362-76. PubMed ID: 25447903 [TBL] [Abstract][Full Text] [Related]
6. Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. Jung S; Main D; Staton M; Cho I; Zhebentyayeva T; Arús P; Abbott A BMC Genomics; 2006 Apr; 7():81. PubMed ID: 16615871 [TBL] [Abstract][Full Text] [Related]
7. A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease. Raghavachari N; Barb J; Yang Y; Liu P; Woodhouse K; Levy D; O'Donnell CJ; Munson PJ; Kato GJ BMC Med Genomics; 2012 Jun; 5():28. PubMed ID: 22747986 [TBL] [Abstract][Full Text] [Related]
8. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. Molina C; Zaman-Allah M; Khan F; Fatnassi N; Horres R; Rotter B; Steinhauer D; Amenc L; Drevon JJ; Winter P; Kahl G BMC Plant Biol; 2011 Feb; 11():31. PubMed ID: 21320317 [TBL] [Abstract][Full Text] [Related]
9. Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. Vizoso P; Meisel LA; Tittarelli A; Latorre M; Saba J; Caroca R; Maldonado J; Cambiazo V; Campos-Vargas R; Gonzalez M; Orellana A; Silva H BMC Genomics; 2009 Sep; 10():423. PubMed ID: 19744325 [TBL] [Abstract][Full Text] [Related]
10. Expression profiling of genes involved in the formation of aroma in two peach genotypes. Pirona R; Vecchietti A; Lazzari B; Caprera A; Malinverni R; Consolandi C; Severgnini M; De Bellis G; Chietera G; Rossini L; Pozzi C Plant Biol (Stuttg); 2013 May; 15(3):443-51. PubMed ID: 23043277 [TBL] [Abstract][Full Text] [Related]
11. Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers. Li X; Shangguan L; Song C; Wang C; Gao Z; Yu H; Fang J BMC Genet; 2010 Jul; 11():66. PubMed ID: 20626882 [TBL] [Abstract][Full Text] [Related]
12. Candidate gene database and transcript map for peach, a model species for fruit trees. Horn R; Lecouls AC; Callahan A; Dandekar A; Garay L; McCord P; Howad W; Chan H; Verde I; Main D; Jung S; Georgi L; Forrest S; Mook J; Zhebentyayeva T; Yu Y; Kim HR; Jesudurai C; Sosinski B; Arús P; Baird V; Parfitt D; Reighard G; Scorza R; Tomkins J; Wing R; Abbott AG Theor Appl Genet; 2005 May; 110(8):1419-28. PubMed ID: 15846479 [TBL] [Abstract][Full Text] [Related]
13. Draft genome sequence of wild Prunus yedoensis reveals massive inter-specific hybridization between sympatric flowering cherries. Baek S; Choi K; Kim GB; Yu HJ; Cho A; Jang H; Kim C; Kim HJ; Chang KS; Kim JH; Mun JH Genome Biol; 2018 Sep; 19(1):127. PubMed ID: 30180884 [TBL] [Abstract][Full Text] [Related]
14. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes. Brooks MJ; Rajasimha HK; Roger JE; Swaroop A Mol Vis; 2011; 17():3034-54. PubMed ID: 22162623 [TBL] [Abstract][Full Text] [Related]
15. Next generation sequencing of microbial transcriptomes: challenges and opportunities. van Vliet AH FEMS Microbiol Lett; 2010 Jan; 302(1):1-7. PubMed ID: 19735299 [TBL] [Abstract][Full Text] [Related]
17. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Alba R; Fei Z; Payton P; Liu Y; Moore SL; Debbie P; Cohn J; D'Ascenzo M; Gordon JS; Rose JK; Martin G; Tanksley SD; Bouzayen M; Jahn MM; Giovannoni J Plant J; 2004 Sep; 39(5):697-714. PubMed ID: 15315633 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide identification and analysis of FK506-binding protein gene family in peach (Prunus persica). Zhang Y; Han J; Liu D; Wen X; Li Y; Tao R; Peng Y; Fang J; Wang C Gene; 2014 Feb; 536(2):416-24. PubMed ID: 24342662 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome sequencing and microarray design for functional genomics in the extremophile Arabidopsis relative Thellungiella salsuginea (Eutrema salsugineum). Lee YP; Giorgi FM; Lohse M; Kvederaviciute K; Klages S; Usadel B; Meskiene I; Reinhardt R; Hincha DK BMC Genomics; 2013 Nov; 14():793. PubMed ID: 24228715 [TBL] [Abstract][Full Text] [Related]
20. Microarrays and high-throughput transcriptomic analysis in species with incomplete availability of genomic sequences. Pariset L; Chillemi G; Bongiorni S; Romano Spica V; Valentini A N Biotechnol; 2009 Jun; 25(5):272-9. PubMed ID: 19446516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]