These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21584762)

  • 1. Sound imaging of nocturnal animal calls in their natural habitat.
    Mizumoto T; Aihara I; Otsuka T; Takeda R; Aihara K; Okuno HG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Sep; 197(9):915-21. PubMed ID: 21584762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of a chorus structure in multiple frog species by a sound discrimination device.
    Awano H; Shirasaka M; Mizumoto T; Okuno HG; Aihara I
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 Jan; 207(1):87-98. PubMed ID: 33481121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex and transitive synchronization in a frustrated system of calling frogs.
    Aihara I; Takeda R; Mizumoto T; Otsuka T; Takahashi T; Okuno HG; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031913. PubMed ID: 21517531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long recording sequences: how to track the intra-individual variability of acoustic signals.
    Lengagne T; Gomez D; Josserand R; Voituron Y
    PLoS One; 2015; 10(5):e0123828. PubMed ID: 25970183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Social context influences androgenic effects on calling in the green treefrog (Hyla cinerea).
    Burmeister SS; Wilczynski W
    Horm Behav; 2001 Dec; 40(4):550-8. PubMed ID: 11716585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How the environment shapes animal signals: a test of the acoustic adaptation hypothesis in frogs.
    Goutte S; Dubois A; Howard SD; Márquez R; Rowley JJL; Dehling JM; Grandcolas P; Xiong RC; Legendre F
    J Evol Biol; 2018 Jan; 31(1):148-158. PubMed ID: 29150984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear dynamics and bifurcations of a coupled oscillator model for calling behavior of Japanese tree frogs (Hyla japonica).
    Aihara I; Tsumoto K
    Math Biosci; 2008; 214(1-2):6-10. PubMed ID: 18433801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling synchronized calling behavior of Japanese tree frogs.
    Aihara I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011918. PubMed ID: 19658740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended amplification of acoustic signals by amphibian burrows.
    Muñoz MI; Penna M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jul; 202(7):473-87. PubMed ID: 27209276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound transmission and the recognition of temporally degraded sexual advertisement signals in Cope's gray treefrog (Hyla chrysoscelis).
    Kuczynski MC; Vélez A; Schwartz JJ; Bee MA
    J Exp Biol; 2010 Aug; 213(Pt 16):2840-50. PubMed ID: 20675554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral responses to predator and heterospecific alarm calls are habitat-specific in Eurasian tree sparrows.
    Zhao L; Zhong G; Liu Q; Zhang X; Wang J; Liang W
    Behav Processes; 2024 May; 218():105043. PubMed ID: 38692462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-cost synchronization of high-speed audio and video recordings in bio-acoustic experiments.
    Laurijssen D; Verreycken E; Geipel I; Daems W; Peremans H; Steckel J
    J Exp Biol; 2018 Feb; 221(Pt 4):. PubMed ID: 29361603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing Phonotactic Behavior of Female Frogs in Darkness.
    Aihara I; Bishop PJ; Ohmer MEB; Awano H; Mizumoto T; Okuno HG; Narins PM; Hero JM
    Sci Rep; 2017 Sep; 7(1):10539. PubMed ID: 28874770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced call effort in Japanese tree frogs infected by amphibian chytrid fungus.
    An D; Waldman B
    Biol Lett; 2016 Mar; 12(3):20160018. PubMed ID: 26932682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine vasotocin injection increases probability of calling in cricket frogs, but causes call changes characteristic of less aggressive males.
    Marler CA; Chu J; Wilczynski W
    Horm Behav; 1995 Dec; 29(4):554-70. PubMed ID: 8748513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental constraints and call evolution in torrent-dwelling frogs.
    Goutte S; Dubois A; Howard SD; Marquez R; Rowley JJ; Dehling JM; Grandcolas P; Rongchuan X; Legendre F
    Evolution; 2016 Apr; 70(4):811-26. PubMed ID: 26960074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ground offers acoustic efficiency gains for crickets and other calling animals.
    Brandt EE; Duke S; Wang H; Mhatre N
    Proc Natl Acad Sci U S A; 2023 Nov; 120(46):e2302814120. PubMed ID: 37934821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using feature vectors to detect frog calls in wireless sensor networks.
    Croker B; Kottege N
    J Acoust Soc Am; 2012 May; 131(5):EL400-5. PubMed ID: 22559459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotic and abiotic sounds affect calling activity but not plasma testosterone levels in male frogs (Batrachyla taeniata) in the field and in captivity.
    Muñoz MI; Quispe M; Maliqueo M; Penna M
    Horm Behav; 2020 Feb; 118():104605. PubMed ID: 31644890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental and morphological constraints interact to drive the evolution of communication signals in frogs.
    Muñoz MI; Goutte S; Ellers J; Halfwerk W
    J Evol Biol; 2020 Dec; 33(12):1749-1757. PubMed ID: 33047401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.