These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 21584775)
1. An information-geometric framework for statistical inferences in the neural spike train space. Wu W; Srivastava A J Comput Neurosci; 2011 Nov; 31(3):725-48. PubMed ID: 21584775 [TBL] [Abstract][Full Text] [Related]
2. Towards statistical summaries of spike train data. Wu W; Srivastava A J Neurosci Methods; 2011 Jan; 195(1):107-10. PubMed ID: 21115044 [TBL] [Abstract][Full Text] [Related]
3. Estimating summary statistics in the spike-train space. Wu W; Srivastava A J Comput Neurosci; 2013 Jun; 34(3):391-410. PubMed ID: 23053864 [TBL] [Abstract][Full Text] [Related]
4. Estimation of a mean template from spike-train data. Wu W; Srivastava A Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1323-6. PubMed ID: 23366142 [TBL] [Abstract][Full Text] [Related]
5. A reproducing kernel Hilbert space framework for spike train signal processing. Paiva AR; Park I; Príncipe JC Neural Comput; 2009 Feb; 21(2):424-49. PubMed ID: 19431265 [TBL] [Abstract][Full Text] [Related]
7. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Jackson BS Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210 [TBL] [Abstract][Full Text] [Related]
8. A nonparametric approach for detection of bursts in spike trains. Gourévitch B; Eggermont JJ J Neurosci Methods; 2007 Mar; 160(2):349-58. PubMed ID: 17070926 [TBL] [Abstract][Full Text] [Related]
9. Non-Euclidean properties of spike train metric spaces. Aronov D; Victor JD Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061905. PubMed ID: 15244615 [TBL] [Abstract][Full Text] [Related]
10. Wavelet-based processing of neuronal spike trains prior to discriminant analysis. Laubach M J Neurosci Methods; 2004 Apr; 134(2):159-68. PubMed ID: 15003382 [TBL] [Abstract][Full Text] [Related]
11. Testing a neural coding hypothesis using surrogate data. Hirata Y; Katori Y; Shimokawa H; Suzuki H; Blenkinsop TA; Lang EJ; Aihara K J Neurosci Methods; 2008 Jul; 172(2):312-22. PubMed ID: 18565591 [TBL] [Abstract][Full Text] [Related]
12. Strictly positive-definite spike train kernels for point-process divergences. Park IM; Seth S; Rao M; Príncipe JC Neural Comput; 2012 Aug; 24(8):2223-50. PubMed ID: 22509968 [TBL] [Abstract][Full Text] [Related]
13. Multiscale analysis of neural spike trains. Ramezan R; Marriott P; Chenouri S Stat Med; 2014 Jan; 33(2):238-56. PubMed ID: 23996238 [TBL] [Abstract][Full Text] [Related]
14. Dynamic programming algorithms for comparing multineuronal spike trains via cost-based metrics and alignments. Victor JD; Goldberg DH; Gardner D J Neurosci Methods; 2007 Apr; 161(2):351-60. PubMed ID: 17174403 [TBL] [Abstract][Full Text] [Related]
15. Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process. Gutnisky DA; Josić K J Neurophysiol; 2010 May; 103(5):2912-30. PubMed ID: 20032244 [TBL] [Abstract][Full Text] [Related]
19. Generation of spike trains with controlled auto- and cross-correlation functions. Krumin M; Shoham S Neural Comput; 2009 Jun; 21(6):1642-64. PubMed ID: 19191596 [TBL] [Abstract][Full Text] [Related]
20. Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons. De Blasi S; Ciba M; Bahmer A; Thielemann C J Neurosci Methods; 2019 Jan; 312():169-181. PubMed ID: 30500352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]